Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Construction of Positional Control in a Multistep Portfolio Optimization Problem with Probabilistic Criterion

  • topical issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider a multistep portfolio optimization problem. At every time step, capital can be invested either in a risk-free asset with fixed income or in a risky asset with a random return with a finite density. The optimality criterion is the probability of reaching or exceeding the investor’s capital at the terminal time moment at a certain predetermined level. Based on the use of piecewise constant control, we propose a positional control that surpasses previously known universal controls, which are used in portfolio optimization problems, in terms of the value of the probabilistic criterion on a wide set of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Calafiore, G. Multi-period Portfolio Optimization with Linear Control Policies. Automatica 44(no. 10), 2463–2473 (2008).

    Article  MathSciNet  Google Scholar 

  2. Bodnar, T., Parolya, N. & Schmid, W. On the Exact Solution of the Multi-period Portfolio Choice Problem for an Exponential Utility under Return Predictability. Eur. J. Oper. Res. 246(no. 2), 528–542 (2015).

    Article  MathSciNet  Google Scholar 

  3. Canakoglu, E. & Ozekici, S. Portfolio Selection in Stochastic Markets with HARA Utility Functions. Eur. J. Oper. Res. 201(no. 2), 520–536 (2010).

    Article  MathSciNet  Google Scholar 

  4. Mei, X., DeMiguel, V. & Nogales, F. J. Multiperiod Portfolio Optimization with Multiple Risky Assets and General Transaction Costs. J. Bank. Fin. 69, 108–120 (2016).

    Article  Google Scholar 

  5. Kan, Yu. S. Control Optimization by the Quantile Criterion. Autom. Remote Control 62(no. 5), 746–757 (2001).

    Article  MathSciNet  Google Scholar 

  6. Grigor’ev, V. P. & Kan, Yu. S. Optimal Control of the Investment Portfolio with Respect to the Quantile Criterion. Autom. Remote Control 65(no. 2), 319–336 (2004).

    Article  MathSciNet  Google Scholar 

  7. Kibzun, A. I. & Ignatov, A. N. The Two-step Problem of Investment Portfolio Selection from Two Risk Assets via the Probability Criterion. Autom. Remote Control 76(no. 7), 1201–1220 (2015).

    Article  MathSciNet  Google Scholar 

  8. Kibzun, A. I. & Kuznetsov, E. A. Optimal Control of Discretionary Portfolio. Autom. Remote Control 64(no. 9), 1489–1501 (2001).

    Article  Google Scholar 

  9. Kibzun, A. I. & Kuznetsov, E. A. Positional Strategy of Forming the Investment Portfolio. Autom. Remote Control 64(no. 1), 138–152 (2003).

    Article  MathSciNet  Google Scholar 

  10. Kibzun, A. I. & Ignatov, A. N. Reduction of the Two-step Problem of Stochastic Optimal Control with Bilinear Model to the Problem of Mixed Integer Linear Programming. Autom. Remote Control 77(no. 12), 2175–2192 (2016).

    Article  MathSciNet  Google Scholar 

  11. Azanov, V. M. & Kan, Yu. S. Design of Optimal Strategies in the Problems of Discrete System Control by the Probabilistic Criterion. Autom. Remote Control 78(no. 6), 1006–1027 (2017).

    Article  MathSciNet  Google Scholar 

  12. Azanov, V. M. & Kan, Yu. S. Bilateral Estimation of the Bellman Function in the Problems of Optimal Stochastic Control of Discrete Systems by the Probabilistic Performance Criterion. Autom. Remote Control 79(no. 2), 203–215 (2018).

    Article  MathSciNet  Google Scholar 

  13. Azanov, V. M. & Kan, Yu. S. Refined Estimation of the Bellman Function for Stochastic Optimal Control Problems with Probabilistic Performance Criterion. Autom. Remote Control 80(no. 4), 634–647 (2019).

    Article  MathSciNet  Google Scholar 

  14. Kibzun, A. I. & Ignatov, A. N. On the Existence of Optimal Strategies in the Control Problem for a Stochastic Discrete Time System with Respect to the Probability Criterion. Autom. Remote Control 78(no. 10), 1845–1856 (2017).

    Article  MathSciNet  Google Scholar 

  15. Ignatov, A.N.The Structure of an Investment Portfolio in Two-step Problem of Optimal Investment with One Risky Asset Via the Probability Criterion, Supppl. Proc. 5th Int. Conf. Analysis of Images, Social Networks and Texts (AIST’2016), Yekaterinburg, Russia, April 7–9, 2016, pp. 42–50.

  16. Ignatov, A.N.Sintez optimal’nykh strategii v dvukhshagovykh zadachakh stokhasticheskogo optimal’nogo upravleniya bilineinoi model’yu s veroyatnostnym kriteriem (Synthesis of Optimal Strategies in Two-Step Stochastic Optimal Control Problems for a Bilinear Model with a Probabilistic Criterion), PhD Dissertation, Moscow Aviation Institute, Moscow, 2016.

  17. Kan, Yu. S. & Kibzun, A. I. Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kriteriyami (Stochastic Programming Problems with Probabilistic Criteria). (Fizmatlit, Moscow, 2009).

    Google Scholar 

  18. Kelly, J. L. A New Interpretation of Information Rate. Bell Sys. Tech. J. no. 35, 917–926 (1956).

    Article  MathSciNet  Google Scholar 

  19. MacLean, L. C., Thorp, E. O., Zhao, Y. & Ziemba, W. T. How Does the Fortuneas Formula Kelly Capital Growth Model Perform? J. Port. Man. Sum. 37(no. 4), 96–111 (2011).

    Article  Google Scholar 

  20. Stochastic Optimization Models in Finance, Ziemba, W.T. and Vickson, R.G., Eds., Singapore: World Scientific, 2006.

  21. Entsiklopediya finansovogo risk-menedzhmenta (Encyclopaedia of Financial Risk Management), Lobanov, A.A. and Chugunov, A.V., Eds., Moscow: Alpina Publisher, 2003.

  22. Ignatov, A. N. & Kibzun, A. I. On Formation of Security Portfolio with Uniform Distribution by Logarithmic Criterion and Priority Risk Component. Autom. Remote Control 75(no. 3), 481–495 (2014).

    Article  MathSciNet  Google Scholar 

  23. Barmish, B. R. & Lagoa, C. M. The Uniform Distribution: A Rigorous Justification for Its Use in Robustness Analysis. Math. Cont. Signals Sys. 10, 203–222 (1997).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ignatov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatov, A. On the Construction of Positional Control in a Multistep Portfolio Optimization Problem with Probabilistic Criterion. Autom Remote Control 81, 2181–2193 (2020). https://doi.org/10.1134/S0005117920120036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920120036

Keywords