Abstract
We consider a multistep portfolio optimization problem. At every time step, capital can be invested either in a risk-free asset with fixed income or in a risky asset with a random return with a finite density. The optimality criterion is the probability of reaching or exceeding the investor’s capital at the terminal time moment at a certain predetermined level. Based on the use of piecewise constant control, we propose a positional control that surpasses previously known universal controls, which are used in portfolio optimization problems, in terms of the value of the probabilistic criterion on a wide set of examples.
Similar content being viewed by others
References
Calafiore, G. Multi-period Portfolio Optimization with Linear Control Policies. Automatica 44(no. 10), 2463–2473 (2008).
Bodnar, T., Parolya, N. & Schmid, W. On the Exact Solution of the Multi-period Portfolio Choice Problem for an Exponential Utility under Return Predictability. Eur. J. Oper. Res. 246(no. 2), 528–542 (2015).
Canakoglu, E. & Ozekici, S. Portfolio Selection in Stochastic Markets with HARA Utility Functions. Eur. J. Oper. Res. 201(no. 2), 520–536 (2010).
Mei, X., DeMiguel, V. & Nogales, F. J. Multiperiod Portfolio Optimization with Multiple Risky Assets and General Transaction Costs. J. Bank. Fin. 69, 108–120 (2016).
Kan, Yu. S. Control Optimization by the Quantile Criterion. Autom. Remote Control 62(no. 5), 746–757 (2001).
Grigor’ev, V. P. & Kan, Yu. S. Optimal Control of the Investment Portfolio with Respect to the Quantile Criterion. Autom. Remote Control 65(no. 2), 319–336 (2004).
Kibzun, A. I. & Ignatov, A. N. The Two-step Problem of Investment Portfolio Selection from Two Risk Assets via the Probability Criterion. Autom. Remote Control 76(no. 7), 1201–1220 (2015).
Kibzun, A. I. & Kuznetsov, E. A. Optimal Control of Discretionary Portfolio. Autom. Remote Control 64(no. 9), 1489–1501 (2001).
Kibzun, A. I. & Kuznetsov, E. A. Positional Strategy of Forming the Investment Portfolio. Autom. Remote Control 64(no. 1), 138–152 (2003).
Kibzun, A. I. & Ignatov, A. N. Reduction of the Two-step Problem of Stochastic Optimal Control with Bilinear Model to the Problem of Mixed Integer Linear Programming. Autom. Remote Control 77(no. 12), 2175–2192 (2016).
Azanov, V. M. & Kan, Yu. S. Design of Optimal Strategies in the Problems of Discrete System Control by the Probabilistic Criterion. Autom. Remote Control 78(no. 6), 1006–1027 (2017).
Azanov, V. M. & Kan, Yu. S. Bilateral Estimation of the Bellman Function in the Problems of Optimal Stochastic Control of Discrete Systems by the Probabilistic Performance Criterion. Autom. Remote Control 79(no. 2), 203–215 (2018).
Azanov, V. M. & Kan, Yu. S. Refined Estimation of the Bellman Function for Stochastic Optimal Control Problems with Probabilistic Performance Criterion. Autom. Remote Control 80(no. 4), 634–647 (2019).
Kibzun, A. I. & Ignatov, A. N. On the Existence of Optimal Strategies in the Control Problem for a Stochastic Discrete Time System with Respect to the Probability Criterion. Autom. Remote Control 78(no. 10), 1845–1856 (2017).
Ignatov, A.N.The Structure of an Investment Portfolio in Two-step Problem of Optimal Investment with One Risky Asset Via the Probability Criterion, Supppl. Proc. 5th Int. Conf. Analysis of Images, Social Networks and Texts (AIST’2016), Yekaterinburg, Russia, April 7–9, 2016, pp. 42–50.
Ignatov, A.N.Sintez optimal’nykh strategii v dvukhshagovykh zadachakh stokhasticheskogo optimal’nogo upravleniya bilineinoi model’yu s veroyatnostnym kriteriem (Synthesis of Optimal Strategies in Two-Step Stochastic Optimal Control Problems for a Bilinear Model with a Probabilistic Criterion), PhD Dissertation, Moscow Aviation Institute, Moscow, 2016.
Kan, Yu. S. & Kibzun, A. I. Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kriteriyami (Stochastic Programming Problems with Probabilistic Criteria). (Fizmatlit, Moscow, 2009).
Kelly, J. L. A New Interpretation of Information Rate. Bell Sys. Tech. J. no. 35, 917–926 (1956).
MacLean, L. C., Thorp, E. O., Zhao, Y. & Ziemba, W. T. How Does the Fortuneas Formula Kelly Capital Growth Model Perform? J. Port. Man. Sum. 37(no. 4), 96–111 (2011).
Stochastic Optimization Models in Finance, Ziemba, W.T. and Vickson, R.G., Eds., Singapore: World Scientific, 2006.
Entsiklopediya finansovogo risk-menedzhmenta (Encyclopaedia of Financial Risk Management), Lobanov, A.A. and Chugunov, A.V., Eds., Moscow: Alpina Publisher, 2003.
Ignatov, A. N. & Kibzun, A. I. On Formation of Security Portfolio with Uniform Distribution by Logarithmic Criterion and Priority Risk Component. Autom. Remote Control 75(no. 3), 481–495 (2014).
Barmish, B. R. & Lagoa, C. M. The Uniform Distribution: A Rigorous Justification for Its Use in Robustness Analysis. Math. Cont. Signals Sys. 10, 203–222 (1997).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ignatov, A. On the Construction of Positional Control in a Multistep Portfolio Optimization Problem with Probabilistic Criterion. Autom Remote Control 81, 2181–2193 (2020). https://doi.org/10.1134/S0005117920120036
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0005117920120036