Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Design of Suboptimal Robust Controllers Based on a Priori and Experimental Data

  • LINEAR SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper develops a novel unified approach to designing suboptimal robust control laws for uncertain objects with different criteria based on a priori information and experimental data. The guaranteed estimates of the γ0, generalized H2, and H norms of a closed loop system and the corresponding suboptimal robust control laws are expressed in terms of solutions of linear matrix inequalities considering a priori knowledge and object modeling data. A numerical example demonstrates the improved quality of control systems when a priori and experimental data are used together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.

  2. Petersen, I.R. and Tempo, R., Robust Control of Uncertain Systems: Classical Results and Recent Developments, Automatica, 2014, vol. 50, no. 5, pp. 1315–1335.

    Article  MathSciNet  Google Scholar 

  3. Andrievsky, B.R. and Fradkov, A.L., Speed Gradient Method and Its Applications, Autom. Remote Control, 2021, vol. 82, no. 9, pp. 1463–1518.

    Article  MathSciNet  Google Scholar 

  4. Annaswamy, A.A. and Fradkov, A.L., A Historical Perspective of Adaptive Control and Learning, Annual Reviews in Control, 2021, vol. 52, pp. 18–41.

    Article  MathSciNet  Google Scholar 

  5. De Persis, C. and Tesi, P., Formulas for Data-Driven Control: Stabilization, Optimality, and Robustness, IEEE Trans. Automat. Control, 2020, vol. 65, no. 3, pp. 909–924.

    Article  MathSciNet  Google Scholar 

  6. Waarde, H.J., Eising, J., Trentelman, H.L., and Camlibel, M.K., Data Informativity: A New Perspective on Data-Driven Analysis and Control, IEEE Trans. Automat. Control, 2020, vol. 65, no. 11, pp. 4753–4768.

    Article  MathSciNet  Google Scholar 

  7. Berberich, J., Koch, A., Scherer, C.W., and Allgower, F., Robust Data-Driven State-Feedback Design, Proc. Amer. Control Conf., 2020, pp. 1532–1538.

  8. Waarde, H.J., Camlibel, M.K., and Mesbahi, M., From Noisy Data to Feedback Controllers: Nonconservative Design via a Matrix S-Lemma, IEEE Trans. Automat. Control, 2022, vol. 67, no. 1, pp. 162–175.

    Article  MathSciNet  Google Scholar 

  9. Bisoffi, A., De Persis, C., and Tesi, P., Data-Driven Control via Petersen’s Lemma, Automatica, 2022, vol. 145, art. no. 110537.

    Article  MathSciNet  Google Scholar 

  10. Willems, J.C., Rapisarda, P., Markovsky, I., and De Moor, B., A Note on Persistency of Excitation, Syst. Control Lett., 2005, vol. 54, pp. 325–329.

    Article  MathSciNet  Google Scholar 

  11. Yakubovich, V.A., S-procedure in Nonlinear Control Theory, Vestn. Leningrad. Univ. Mat., 1977, vol. 4, pp. 73–93.

    Google Scholar 

  12. Petersen, I.R., A Stabilization Algorithm for a Class of Uncertain Linear Systems, Syst. Control Lett., 1987, vol. 8, pp. 351–357.

    Article  MathSciNet  Google Scholar 

  13. Doyle, J.C., Analysis of Feedback Systems with Structured Uncertainties, IEE Proc., 1982, vol. 129, part D(6), pp. 242–250.

  14. Safonov, M.G., Stability Margins of Diagonally Perturbed Multivariable Feedback Systems, IEE Proc., 1982, vol. 129, part D(6), pp. 251–256.

  15. Kogan, M.M., Optimal Discrete-time H /γ0 Filtering and Control under Unknown Covariances, Int. J. Control, 2016, vol. 89, no. 4, pp. 691–700.

    Article  MathSciNet  Google Scholar 

  16. Wilson, D.A., Convolution and Hankel Operator Norms for Linear Systems, IEEE Trans. Autom. Control, 1989, vol. 34, no. 1, pp. 94–97.

    Article  MathSciNet  Google Scholar 

  17. Balandin, D.V., Biryukov, R.S., and Kogan, M.M., Minimax Control of Deviations for the Outputs of a Linear Discrete Time-Varying System, Autom. Remote Control, 2019, vol. 80, no. 12, pp. 345–359.

    Google Scholar 

  18. Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge: University Press, 2004.

    Book  Google Scholar 

Download references

Funding

This work was supported by the Scientific and Educational Mathematical Center “Mathematics of Future Technologies,” agreement no. 075-02-2023-945.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Kogan or A. V. Stepanov.

Additional information

This paper was recommended for publication by M.V. Khlebnikov, a member of the Editorial Board

APPENDIX

APPENDIX

Proof of Lemma 3.1. We write the Lagrange function for this problem and express the optimal value of its dual function as

$$\mathop {\min }\limits_{{{P}_{0}}\, \geqslant \,0,{{\gamma }^{2}}\, \geqslant \,0} \mathop {\max }\limits_{{{K}_{x}}\, \geqslant \,0,{{K}_{w}}\, \geqslant \,0} \left[ {\operatorname{tr} {{C}_{\Theta }}{{K}_{x}}C_{\Theta }^{{\text{T}}} + \operatorname{tr} {{P}_{0}}({{A}_{\Delta }}{{K}_{x}}A_{\Delta }^{{\text{T}}} - {{K}_{x}} + B{{K}_{w}}{{B}^{{\text{T}}}}) + {{\gamma }^{2}}(1 - \operatorname{tr} {{K}_{w}})} \right]$$
$$ = \mathop {\min }\limits_{{{P}_{0}}\, \geqslant \,0,{{\gamma }^{2}}\, \geqslant \,0} \mathop {\max }\limits_{{{K}_{x}}\, \geqslant \,0,{{K}_{w}}\, \geqslant \,0} \left[ {{{\gamma }^{2}} + \operatorname{tr} {{K}_{x}}(A_{\Delta }^{{\text{T}}}{{P}_{0}}{{A}_{\Delta }} - {{P}_{0}} + C_{\Theta }^{{\text{T}}}{{C}_{\Theta }}) + \operatorname{tr} {{K}_{w}}({{B}^{{\text{T}}}}{{P}_{0}}B - {{\gamma }^{2}}I)} \right].$$

This value is finite under inequalities (3.4); then the maximum is reached at Kx = 0 and Kw = 0. In this case, the optimal value of the dual problem coincides with λmax(BTP0B). Since the function is convex and there exists an interior point satisfying the constraint, the primal and dual problems have the same optimal value [18].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kogan, M.M., Stepanov, A.V. Design of Suboptimal Robust Controllers Based on a Priori and Experimental Data. Autom Remote Control 84, 814–826 (2023). https://doi.org/10.1134/S0005117923080064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117923080064

Keywords: