Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Necessary Extremum Conditions and the Neustadt–Eaton Method in the Time-Optimal Control Problem for a Group of Nonsynchronous Oscillators

  • TOPICAL ISSUE
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The time-optimal control problem for an arbitrary number of nonsynchronous oscillators with a limited scalar control is considered. An analytical investigation of the problem is performed. The property of strong accessibility and global controllability is proved, and a program control is found that brings the system from the origin to a fixed point in the shortest time. Trajectories satisfying both the motion equations of the system and the additional conditions based on the matrix nondegeneracy conditions of the relay control have been found for bringing a group of oscillators to the origin. Two classification methods of trajectories according to the number of control switchings are compared: the one based on the necessary extremum conditions and the Neustadt–Eaton numerical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Eaton, J.H., An iterative solution to time-optimal control, J. Math. Anal. Appl., 1962, vol. 5, pp. 329–344. https://doi.org/10.1016/S0022-247X(62)80015-8

    Article  MathSciNet  Google Scholar 

  2. Neustadt, L.W., Synthesizing time-optimal control systems, J. Math. Anal. Appl., 1960, vol. 1, pp. 484–493. https://doi.org/10.1016/0022-247X(60)90015-9

    Article  MathSciNet  Google Scholar 

  3. Boltyanskii, V.G., Matematicheskie metody optimal’nogo upravleniya (Mathematical Methods of Optimal Control), Moscow: Nauka, 1969.

    Google Scholar 

  4. Fedorenko, R.P., Priblizhennoe reshenie zadach optimal’nogo upravleniya (Approximate Solution of Optimal control problems), Moscow: Nauka, 1978.

    Google Scholar 

  5. Lee, E.B. and Markus, L., Foundations of Optimal Control Theory, New York: Wiley, 1967.

    Google Scholar 

  6. Pshenichnyi, B.N., A numerical method of calculating the optimum high speed control for linear systems, Comput. Math. Math. Phys., 1964, vol. 4, no. 1, pp. 71–82. https://doi.org/10.1016/0041-5553(64)90216-2

    Article  Google Scholar 

  7. Starov, V.G., Improvement of Neustadt–Eaton’s method convergence, Mathematical Notes of NEFU, 2019, vol. 26, no. 1, pp. 70–80. https://doi.org/10.25587/SVFU.2019.101.27248

  8. Rabinovich, A.B., On a class of methods for the iterational solution of time-optimal problems, Comput. Math. Math. Phys., 1966, vol. 6, no. 3, pp. 30–46. https://doi.org/10.1016/0041-5553(66)90131-5

    Article  Google Scholar 

  9. Pshenichnyi, B.N. and Sobolenko, L.A., Accelerated method of solving the linear time optimal problem, Comput. Math. Math. Phys., 1968, vol. 8, no. 6, pp. 214–225. https://doi.org/10.1016/0041-5553(68)90107-9

    Article  Google Scholar 

  10. Polyak, B.T., Convergence of methods of feasible directions in extremal problems, Comput. Math. Math. Phys., 1971, vol. 11, no. 4, pp. 53–70. https://doi.org/10.1016/0041-5553(71)90004-8

    Article  MathSciNet  Google Scholar 

  11. Aleksandrov, V.M., Real-time computation of optimal control, Comput. Math. Math. Phys., 2012, vol. 52, no. 10, pp. 1351–1372. https://doi.org/10.1134/S0965542512100028

    Article  MathSciNet  Google Scholar 

  12. Shevchenko, G.V., A numerical algorithm for solving a linear time-optimality problem, Comput. Math. Math. Phys., 2002, vol. 42, no. 8, pp. 1123–1134.

    MathSciNet  Google Scholar 

  13. Shevchenko, G.V., Numerical method for solving a nonlinear time-optimal control problem with additive control, Comput. Math. Math. Phys., 2007, vol. 47, no. 11, pp. 1768–1778. https://doi.org/10.1134/S0965542507110048

    Article  MathSciNet  Google Scholar 

  14. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmu-shcheniyakh: Tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems under External Perturbations: Linear Matrix Inequalities Technique), Moscow: LENAND, 2014.

    Google Scholar 

  15. Ovseevich, A.I. and Fedorov, A.K., Asymptotically optimal feedback control for a system of linear oscillators, Dokl. Math., 2013, vol. 88, pp. 613–617. https://doi.org/10.1134/S106456241305013X

    Article  MathSciNet  Google Scholar 

  16. Kayumov, O.R., Time-Optimal Movement of Platform with Oscillators, Mechanics of Solids, 2021, vol. 56, no. 8, pp. 1622–1637. https://doi.org/10.3103/S0025654421080094

    Article  Google Scholar 

  17. Berlin, L.M., Galyaev, A.A., and Lysenko, P.V., Time-optimal control problem of two non-synchronous oscillators, Mathematics, 2022. https://doi.org/10.3390/math10193552

  18. Galyaev, A.A., Scalar control of a group of free-running oscillators, Autom. Remote Control, 2016, vol. 77, no. 9, pp. 1511–1523. https://doi.org/10.1134/S0005117916090010

    Article  MathSciNet  Google Scholar 

  19. Agrachev, A.A. and Sachkov, Yu.L., Control Theory from the Geometric Viewpoint, Berlin: Springer-Verlag, 2004.

    Book  Google Scholar 

  20. Wyrwas, M., Strong accessibility and integral manifolds of the continuous-time nonlinear control systems, J. Math. Anal. Appl., 2019, vol. 469, no. 2, pp. 935–959. https://doi.org/10.1016/j.jmaa.2018.09.045

    Article  MathSciNet  Google Scholar 

  21. Benzaid, Z., Global null controllability of perturbed linear systems with constrained controls, J. Math. Anal. Appl., 1988, vol. 136, pp. 201–216. https://doi.org/10.1016/0022-247X(88)90126-6

    Article  MathSciNet  Google Scholar 

  22. Berlin, L.M., Galyaev, A.A. and Kravtsova, S.K., About two-switching control class in the time-optimal control problem of two non-synchronous oscillators, Large-Scale Systems Control, 2023, vol. 136, pp. 24–38. https://doi.org/10.25728/ubs.2023.101.2

Download references

Funding

This research was funded by a grant to support youth scientific schools of Trapeznikov Institute of Control Sciences, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. M. Berlin, A. A. Galyaev or P. V. Lysenko.

Additional information

This paper was recommended for publication by P.S. Shcherbakov, a member of the Editorial Board

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berlin, L.M., Galyaev, A.A. & Lysenko, P.V. Necessary Extremum Conditions and the Neustadt–Eaton Method in the Time-Optimal Control Problem for a Group of Nonsynchronous Oscillators. Autom Remote Control 85, 543–556 (2024). https://doi.org/10.1134/S0005117924060043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117924060043

Keywords: