Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Mechanisms of apoptosis

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Nearly 15 types of programmed cell death (PCD) have been identified to date. Among them, apoptosis is the most common and well-studied type of PCD. In this review, we discuss different apoptotic pathways in which plasma membrane and membrane organelles, such as mitochondria, endoplasmic reticulum, Golgi apparatus, lysosomes, and nucleus play the pivotal role. Data concerning caspase cascades involved in these mechanisms are described. Various apoptosis induction mechanisms are analyzed and compared. The close relations between them and the possibility of switching from one pathway to another are demonstrated. In most cases, the result of these pathways is mitochondrial membrane permeabilization and/or caspase activation. These two events are closely linked and serve as the central point of integration of the apoptotic cell death pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

GA:

Golgi apparatus

PCD:

programmed cell death

PTP:

permeability transition pore

ROS:

reactive oxygen species

UPR:

unfolded protein response

References

  1. Labi, V., and Erlacher, M. (2015) How cell death shapes cancer, Cell Death Dis., 6, e1675.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Galluzzi, L., Vitale, I., Abrams, J. M., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., Dawson, T. M., Dawson, V. L., El-Deiry, W. S., Fulda, S., Gottlieb, E., Green, D. R., Hengartner, M. O., Kepp, O., Knight, R. A., Kumar, S., Lipton, S. A., Lu, X., Madeo, F., Malorni, W., Mehlen, P., Nunez, G., Peter, M. E., Piacentini, M., Rubinsztein, D. C., Shi, Y., Simon, H. U., Vandenabeele, P., White, E., Yuan, J., Zhivotovsky, B., Melino, G., and Kroemer, G. (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012, Cell Death Differ., 19, 107120.

    Article  Google Scholar 

  3. Eckhart, L., Lippens, S., Tschachler, E., and Declercq, W. (2013) Cell death by cornification, Biochim. Biophys. Acta, 1833, 3471–3480.

    Article  CAS  PubMed  Google Scholar 

  4. Lang, E., and Lang, F. (2015) Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death, Biomed. Res. Int., doi: 10.1155/2015/513518.

    Google Scholar 

  5. Gilbertson, R. J. (2014) Driving glioblastoma to drink, Cell, 157, 289–290.

    Article  CAS  PubMed  Google Scholar 

  6. Castedo, M., Perfettini, J. L., Roumier, T., Andreau, K., Medema, R., and Kroemer, G. (2004) Cell death by mitotic catastrophe: a molecular definition, Oncogene, 23, 825837.

    Google Scholar 

  7. Roninson, I. B., Broude, E. V., and Chang, B. D. (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells, Drug Resist. Updat., 4, 303–313.

    Article  CAS  PubMed  Google Scholar 

  8. Nigg, E. A. (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat. Rev. Cancer, 2, 815825.

    Article  Google Scholar 

  9. Edinger, A. L., and Thompson, C. B. (2004) Death by design: apoptosis, necrosis and autophagy, Curr. Opin. Cell Biol., 16, 663–669.

    Article  CAS  PubMed  Google Scholar 

  10. Bras, M., Queenan, B., and Susin, S. A. (2005) Programmed cell death via mitochondria: different modes of dying, Biochemistry (Moscow), 70, 231–239.

    Article  CAS  Google Scholar 

  11. Kroemer, G., Tolkovsky, A. M., and Zakeri, Z. (2008) Elan vital, elan letal: one life but multiple deaths, Cell Death Differ., 15, 1089–1090.

    Article  CAS  PubMed  Google Scholar 

  12. Nakagawa, T., and Yuan, J. (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis, J. Cell Biol., 150, 887–894.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Rosati, E., Sabatini, R., Rampino, G., De Falco, F., Di Ianni, M., Falzetti, F., Fettucciari, K., Bartoli, A., Screpanti, I., and Marconi, P. (2010) Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL, Blood, 116, 2713–2723.

    Article  CAS  PubMed  Google Scholar 

  14. Yamamuro, A., Kishino, T., Ohshima, Y., Yoshioka, Y., Kimura, T., Kasai, A., and Maeda, S. (2011) Caspase-4 directly activates caspase-9 in endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells, J. Pharmacol. Sci., 115, 239–243.

    Article  CAS  PubMed  Google Scholar 

  15. Mancini, M., Machamer, C. E., Roy, S., Nicholson, D. W., Thornberry, N. A., Casciola-Rosen, L. A., and Rosen, A. (2000) Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis, J. Cell Biol., 149, 603612.

    Article  Google Scholar 

  16. Ferri, K. F., and Kroemer, G. (2001) Organelle-specific initiation of cell death pathways, Nat. Cell Biol., 3, 255–263.

    Article  Google Scholar 

  17. Kurz, T., Terman, A., Gustafsson, B., and Brunk, U. T. (2008) Lysosomes in iron metabolism, ageing and apoptosis, Histochem. Cell Biol., 129, 389–406.

    Article  CAS  Google Scholar 

  18. Loughery, J., and Meek, D. (2013) Switching on p53: an essential role for protein phosphorylation? BioDiscovery, 8, 1.

    Google Scholar 

  19. Valente, L., and Strasser, A. (2013) Distinct target genes and effector processes appear to be critical for p53-activated responses to acute DNA damage versus p53-mediated tumor suppression, BioDiscovery, 8, 3.

    Article  Google Scholar 

  20. Sakamaki, K., and Satou, Y. (2009) Caspases: evolutionary aspects of their functions in vertebrates, J. Fish Biol., 74, 727–753.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. McLuskey, K., and Mottram, J. C. (2015) Comparative structural analysis of the caspase family with other clan CD cysteine peptidases, Biochem. J., 466, 219–232.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Boehm, D., Mazurier, C., Giarratana, M. C., Darghouth, D., Faussat, A. M., Harmand, L., and Douay, L. (2013) Caspase-3 is involved in the signaling in erythroid differentiation by targeting late progenitors, PLoS One, 8, e62303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Shalini, S., Dorstyn, L., Dawar, S., and Kumar, S. (2015) Old, new and emerging functions of caspases, Cell Death Differ., 22, 526–539.

    Article  CAS  PubMed  Google Scholar 

  24. Creagh, E. M. (2014) Caspase crosstalk: integration of apoptotic and innate immune signaling pathways, Trends Immunol., 35, 631–640.

    Article  CAS  PubMed  Google Scholar 

  25. Galluzzi, L., Joza, N., Tasdemir, E., Maiuri, M. C., Hengartner, M., Abrams, J. M., Tavernarakis, N., Penninger, J., Madeo, F., and Kroemer, G. (2008) No death without life: vital functions of apoptotic effectors, Cell Death Differ., 15, 1113–1123.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Poon, I. K., Lucas, C. D., Rossi, A. G., and Ravichandran, K. S. (2014) Apoptotic cell clearance: basic biology and therapeutic potential, Nat. Rev. Immunol., 14, 166–180.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ware, C. F. (2003) The TNF superfamily, Cytokine Growth Factor Rev., 14, 181–184.

    Article  CAS  PubMed  Google Scholar 

  28. Bhardway, A., and Aggarwal, B. B. (2003) Receptor-mediated choreography of life and death, J. Clin. Immunol., 23, 317–332.

    Article  Google Scholar 

  29. Kischkel, F. C., Lawrence, D. A., Tinel, A., LeBlanc, H., Virmani, A., Schow, P., Gazdar, A., Blenis, J., Arnott, D., and Ashkenazi, A. (2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8, J. Biol. Chem., 76, 46639–46646.

    Article  Google Scholar 

  30. Ashkenazi, A. (2002) Targeting death and decoy receptors of the tumor-necrosis factor superfamily, Nat. Cancer Rev., 2, 420–430.

    Article  CAS  Google Scholar 

  31. Ott, M., Norberg, E., Zhivotovsky, B., and Orrenius, S. (2009) Mitochondrial targeting of tBid/Bax: a role for the TOM complex? Cell Death Differ., 16, 1075–1082.

    Article  CAS  PubMed  Google Scholar 

  32. Micheau, O., and Tschopp, J. (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes, Cell, 114, 181–190.

    Article  CAS  PubMed  Google Scholar 

  33. Silke, J. (2011) The regulation of TNF signaling: what a tangled web we weave, Curr. Opin. Immunol., 23, 620626.

    Article  Google Scholar 

  34. Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer M., Pawlita, M., Krammer, P. H., and Peter, M. E. (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins forma death-inducing signaling complex (DISC) with the receptor, EMBO J., 14, 5579–5588.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O’ Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., Mann, M., Krammer, P. H., Peter, M. E., and Dixit, V. M. (1996) FLICE, a novel FADDhomologous ICE/CED-3-like protease, is recruited to theCD95 (Fas/APO-1) death-inducing signaling complex, Cell, 85, 817–827.

    Article  CAS  PubMed  Google Scholar 

  36. Medema, J. P., Scaffidi, C., Kischkel, F. C., Shevchenko, A., Mann, M., Krammer, P. H., and Peter, M. E. (1997) FLICE is activated by association with the CD95 deathinducing signaling complex (DISC), EMBO J., 16, 27942804.

    Article  Google Scholar 

  37. Chen, Z. J. (2012) Ubiquitination in signaling to and activation of IKK, Immunol. Rev., 246, 95–106.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Shim, J. H., Xiao, C., Paschal, A. E., Bailey, S. T., Rao, P., Hayden, M. S., Lee, K. Y., Bussey, C., Steckel, M., Tanaka, N., Yamada, G., Akira, S., Matsumoto, K., and Ghosh, S. (2005) TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo, Genes Dev., 19, 2668–2681.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Haas, T. L., Emmerich, C. H., Gerlach, B., Schmukle, A. C., Cordier, S. M., Rieser, E., Feltham, R., Vince, J., Warnken, U., Weniger, T., Koschny, R., Komander, D., Silke, J., and Walczak, H. (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction, Mol. Cell, 36, 831–844.

    Article  CAS  PubMed  Google Scholar 

  40. Scheidereit, C. (2006) IκB kinase complexes: gateways to NF-κB activation and transcription, Oncogene, 25, 66856705.

    Article  Google Scholar 

  41. Bertrand, M. J. M., Milutinovic, S., Dickson, K. M., Ho, W. C., Boudreault, A., Durkin, J., Gillard, J. W., Jaquith, J. B., Morris, S. J., and Barker, P. A. (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination, Mol. Cell, 30, 689–700.

    Article  CAS  PubMed  Google Scholar 

  42. Silke, J., and Brink, R. (2010) Regulation of TNFRSF and innate immune signaling complexes by TRAFs and cIAPs, Cell Death Differ., 17, 35–45.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, L., Du, F., and Wang, X. (2008) TNF-a induces two distinct caspase-8 activation pathways, Cell, 133, 693–703.

    Article  CAS  PubMed  Google Scholar 

  44. Dempsey, P. W., Doyle, S. E., He, J. Q., and Cheng, G. (2003) The signaling adaptors and pathways activated by TNF superfamily, Cytokine Growth Factor Rev., 14, 193209.

    Article  Google Scholar 

  45. Testa, U. (2004) Apoptotic mechanisms in the control of erythropoiesis, Leukemia, 18, 1176–1199.

    Article  CAS  PubMed  Google Scholar 

  46. Lalaoui, N., Lindqvist, L. M., Sandow, J. J., and Ekert, P. G. (2015) The molecular relationships between apoptosis, autophagy, and necroptosis, Semin. Cell Dev. Biol., 39, 6369.

    Article  Google Scholar 

  47. Van den Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., and Van den Abeele, P. (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways, Nat. Rev. Mol. Cell Biol., 15, 135–147.

    Article  CAS  Google Scholar 

  48. De Almagro, M. C., and Vucic, D. (2015) Necroptosis: pathway diversity and characteristics, Semin. Cell Dev. Biol., 39, 56–62.

    Article  CAS  PubMed  Google Scholar 

  49. Szewczyk, A., and Wojtcak, L. (2002) Mitochondria as a pharmacological target, Pharm Rev., 54, 101–127.

    Article  CAS  PubMed  Google Scholar 

  50. Jiang, A. J., Jiang, G., Li, L. T., and Zheng, J. N. (2014) Curcumin induces apoptosis through mitochondrial pathway and caspases activation in human melanoma cells, Mol. Biol. Rep., 42, 267–275.

    Article  PubMed  Google Scholar 

  51. Jiang, G. B., Zheng, X., Yao, J. H., Han, B. J., Li, W., Wang, J., Huang, H. L., and Liu, Y. J. (2014) Ruthenium(II) polypyridyl complexes induce BEL-7402 cell apoptosis by ROS-mediated mitochondrial pathway, J. Inorg. Biochem., 141, 170–179.

    Article  CAS  PubMed  Google Scholar 

  52. Huang, L., Zhang, T., Li, S., Duan, J., Ye, F., Li, H., She, Z., Gao, G., and Yang, X. (2014) Anthraquinone G503 induces apoptosis in gastric cancer cells through the mitochondrial pathway, PLoS One, 9, e108286.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Gogvadze, V., and Zhivotovsky, B. (2014) Mitochondria–a bullseye in cancer therapy, Mitochondrion, 19, Pt. A, 1–2.

    Article  CAS  PubMed  Google Scholar 

  54. Zou, H., Li, Y., Liu, X., and Wang, X. (1999) An APAF1–cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9, J. Biol. Chem., 274, 11549–11556.

    Article  CAS  PubMed  Google Scholar 

  55. Scorrano, L. (2009) Opening the doors to cytochrome c: changes in mitochondrial shape and apoptosis, Int. J. Biochem. Cell Biol., 41, 1875–1883.

    Article  CAS  PubMed  Google Scholar 

  56. Ferreira, P., Villanueva, R., Cabon, L., Susin, S. A., and Medina, M. (2013) The oxido-reductase activity of the apoptosis inducing factor: a promising pharmacological tool? Curr. Pharm. Des., 19, 2628–2636.

    Article  CAS  PubMed  Google Scholar 

  57. Polster, B. M. (2013) AIF, reactive oxygen species, and neurodegeneration: a “complex” problem, Neurochem. Int., 62, 695–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Yadav, N., and Chandra, D. (2014) Mitochondrial and postmitochondrial survival signaling in cancer, Mitochondrion, 16, 18–25.

    Article  CAS  PubMed  Google Scholar 

  59. Renault, T. T., and Manon, S. (2011) Bax: addressed to kill, Biochimie, 93, 1379–1391.

    Article  CAS  PubMed  Google Scholar 

  60. Lithgow, T., Van Driel, R., Bertram, J. F., and Strasser, A. (1994) The protein product of the oncogene bcl-2 is a component of the nuclear envelope, the endoplasmic reticulum, and the outer mitochondrial membrane, Cell Growth Differ., 5, 411–417.

    CAS  PubMed  Google Scholar 

  61. Westphal, D., Dewson, G., Czabotar, P. E., and Kluck, R. M. (2011) Molecular biology of Bax and Bak activation and action, Biochim. Biophys. Acta, 1813, 521–531.

    Article  CAS  PubMed  Google Scholar 

  62. Morciano, G., Giorgi, C., Bonora, M., Punzetti, S., Pavasini, R., Wieckowski, M. R., Campo, G., and Pinton, P. (2015) Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury, J. Mol. Cell. Cardiol., 78, 142–153.

    Article  CAS  PubMed  Google Scholar 

  63. Elkholi, R., Renault, T. T., Serasinghe, M. N., and Chipuk, J. E. (2014) Putting the pieces together: how is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Cancer Metab., 2, 16.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Kokoszka, J. E., Waymire, K. G., Levy, S. E., Sligh, J. E., Cai, J., Jones, D. P., MacGregor, G. R., and Wallace, D. C. (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore, Nature, 427, 461–465.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Brenner, C., and Grimm, S. (2006) The permeability transition pore complex in cancer cell death, Oncogene, 25, 4744–4756.

    Article  CAS  PubMed  Google Scholar 

  66. Chinopoulos, C., and Szabadkai, G. (2014) What makes you can also break you. Part III: mitochondrial permeability transition pore formation by an uncoupling channel within the C-subunit ring of the F1FO ATP synthase? Front. Oncol., 4, 235.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., Inohara, H., Kubo, T., and Tsujimoto, Y. (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death, Nature, 434, 652–658.

    Article  CAS  PubMed  Google Scholar 

  68. Kadowaki, H., Nishitoh, H., and Ichijo, H. (2004) Survival and apoptosis signals in ER stress: the role of protein kinases, J. Chem. Neuroanat., 28, 93–100.

    Article  CAS  PubMed  Google Scholar 

  69. Wang, T., Yang, D., Li, X., Zhang, H., Zhao, P., Fu, J., Yao, B., and Zhou, Z. (2015) ER stress and ER stressmediated apoptosis are involved in manganese-induced neurotoxicity in the rat striatum in vivo, Neurotoxicology, 48, 109–119.

    Article  CAS  PubMed  Google Scholar 

  70. Delaunay-Moisan, A., and Appenzeller-Herzog, C. (2015) The antioxidant machinery of the endoplasmic reticulum: protection and signaling, Free Radic. Biol. Med., 83, 341351.

    Article  Google Scholar 

  71. Zong, W. X., Li, C., Hatzivassiliou, G., Lindsten, T., Yu, Q. C., Yuan, J., and Thompson, C. B. (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis, J. Cell Biol., 162, 59–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Rao, R. V., Ellerby, H. M., and Bredesen, D. E. (2004) Coupling endoplasmic reticulum stress to the cell death program, Cell Death Differ., 11, 372–380.

    Article  CAS  PubMed  Google Scholar 

  73. Namba, T., Tian, F., Chu, K., Hwang, S. Y., Yoon, K. W., Byun, S., Hiraki, M., Mandinova, A., and Lee, S. W. (2013) CDIP1–BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under endoplasmic reticulum stress, Cell Rep., 5, 331–339.

    Article  CAS  PubMed  Google Scholar 

  74. Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., and Tohyama, M. (2001) Activation of caspase-12, an endoplasmic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2dependent mechanism in response to the ER stress, J. Biol. Chem., 276, 13935–13940.

    CAS  PubMed  Google Scholar 

  75. Momoi, T. (2004) Caspases involved in ER stress-mediated cell death, J. Chem. Neuroanat., 28, 101–105.

    Article  CAS  PubMed  Google Scholar 

  76. Hetz, C. (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nat. Rev. Mol. Cell Biol., 13, 89–102.

    CAS  PubMed  Google Scholar 

  77. Dufey, E., Sepulveda, D., Rojas-Rivera, D., and Hetz, C. (2014) Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 1. An overview, Am. J. Physiol. Cell Physiol., 307, 582–594.

    Article  Google Scholar 

  78. Morishima, N., Nakanishi, K., Tsuchiya, K., Shibata, T., and Seiwa, E. (2004) Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis, J. Biol. Chem., 279, 50375–50381.

    Article  CAS  PubMed  Google Scholar 

  79. Hetz, C. A. (2007) ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage, Antioxid. Redox Signal., 9, 2345–2355.

    Article  CAS  PubMed  Google Scholar 

  80. Li, C., Wei, J., Li, Y., He, X., Zhou, Q., Yan, J., Zhang, J., Liu, Y., Liu, Y., and Shu, H. B. (2013) Transmembrane protein 214 (TMEM214) mediates endoplasmic reticulum stress-induced caspase 4 enzyme activation and apoptosis, J. Biol. Chem., 288, 17908–17917.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Matsuzaki, S., Hiratsuka, T., Kuwahara, R., Katayama, T., and Tohyama, M. (2010) Caspase-4 is partially cleaved by calpain via the impairment of Ca2+ homeostasis under the ER stress, Neurochem. Int., 56, 352–356.

    Article  CAS  PubMed  Google Scholar 

  82. Maag, R. S., Hicks, S. W., and Machamer, C. E. (2003) Death from within: apoptosis and the secretory pathway, Curr. Opin. Cell Biol., 15, 456–461.

    Article  CAS  PubMed  Google Scholar 

  83. Chandran, S., and Machamer, C. E. (2012) Inactivation of ceramide transfer protein during pro-apoptotic stress by Golgi disassembly and caspase cleavage, Biochem. J., 442, 391–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. De Duve, C., and Wattiaux, R. (1966) Functions of lysosomes, Annu. Rev. Physiol., 28, 435–492.

    Article  CAS  PubMed  Google Scholar 

  85. Aits, S., and Jaattela, M. (2013) Lysosomal cell death at a glance, J. Cell Sci., 126 (Pt. 9), 1905–1912.

    Article  CAS  PubMed  Google Scholar 

  86. Cesen, M. H., Pegan, K., Spes, A., and Turk, B. (2012) Lysosomal pathways to cell death and their therapeutic applications, Exp. Cell Res., 318, 1245–1251.

    Article  PubMed  Google Scholar 

  87. Galaris, D., Skiada, V., and Barbouti, A. (2008) Redox signaling and cancer: the role of “labile” iron, Cancer Lett., 266, 21–29.

    Article  CAS  PubMed  Google Scholar 

  88. Agarwal, M. L., Taylor, W. R., Chernov, M. V., Chernova, O. B., and Stark, G. R. (1998) The p53 network, J. Biol. Chem., 273, 1–4.

    Article  CAS  PubMed  Google Scholar 

  89. Zamaraev, A. V., Kopeina, G. S., Zhivotovsky, B., and Lavrik, I. N. (2015) Cell death controlling complexes and their potential therapeutic role, Cell Mol. Life Sci., 72, 505–517.

    Article  CAS  PubMed  Google Scholar 

  90. Imre, G., Heering, J., Takeda, A. N., Husmann, M., Thiede, B., zu Heringdorf, D. M., Green, D. R., Van der Goot, F. G., Sinha, B., Dotsch, V., and Rajalingam, K. (2012) Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis, EMBO J., 31, 2615–2628.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Savitskaya.

Additional information

Original Russian Text © M. A. Savitskaya, G. E. Onishchenko, 2015, published in Biokhimiya, 2015, Vol. 80, No. 11, pp. 1613-1627.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savitskaya, M.A., Onishchenko, G.E. Mechanisms of apoptosis. Biochemistry Moscow 80, 1393–1405 (2015). https://doi.org/10.1134/S0006297915110012

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915110012

Keywords