Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Comparative efficiency of algorithms based on support vector machines for binary classification

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Methods of construction of support vector machines (SVMs) require no additional a priori information and allow large volumes of multidimensional data to be processed, which is especially important for solving various problems in computational biology. The main algorithms of SVM construction for binary classification are reviewed. The issue of the quality of the SVM learning algorithms is considered, and a description of proposed algorithms is given that is sufficient for their practical implementation. Comparative analysis of the efficiency of support vector classifiers is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. O. Kadyrova and L. V. Pavlova, Biophysics (Moscow) 59(3), 364 (2014).

    Article  Google Scholar 

  2. V. N. Vapnik, The Nature of Statistical Learning Theory (Springer, 2000).

    Book  MATH  Google Scholar 

  3. A. Elisseeff and M. Pontil, in Advances in Learning Theory: Methods, Models and Applications, Ed. by J. A. K. Suykens et al. (2003), p. 111.

  4. T. Joachims, in Proc. 17th Int. Conf. on Machine Learning (Stanford, CA, 2000), p. 431.

    Google Scholar 

  5. T. Fawcett, in ROC Graphs: Notes and Practical Considerations for Researchers (Kluwer, 2004), p. 1.

    Google Scholar 

  6. J. Davis and M. Goadrich, in Proc. 23rd Int.. Conf. on Machine Learning (Pittsburgh, PA, 2006).

    Google Scholar 

  7. E. Osuna, R. Freund, and F. Girosi, in Proc. of IEEE NNSP’97 (Amelia Island, FL, 1997), p. 279.

    Google Scholar 

  8. T. Joachims, in Advances in Kernel Methods — Support Vector Learning (MIT Press, 1998), p. 41.

    Google Scholar 

  9. J. C. Platt, in Advances in Kernel Methods — Support Vector Learning (MIT Press, 1999), p. 185.

    Google Scholar 

  10. J. Platt, in Advances in Neural Information Processing Systems, Vol. 11 (MIT Press, 1999), p. 557.

    Google Scholar 

  11. S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy, Technical Report CD-99-14 (1999), p. 1 (1999).

    Google Scholar 

  12. P.-H. Chen, R.-E. Fan, and C.-J. Lin, Lecture Notes in Artifical Intelligence 3734, 45 (2005).

    MathSciNet  Google Scholar 

  13. S. Keerthi and E. Gilbert, Machine Learning 46(1–3), 351 (2002).

    Article  MATH  Google Scholar 

  14. O. Mangasarian and D. Musicant, IEEE Trans. Neural Networks 10(5), 1032 (1999).

    Article  Google Scholar 

  15. O. Mangasarian and D. Musicant, in Applications and Algorithms of Complementarity, Ed. by M.C. Ferris, O.L. Mangasarian, and J.-S. Pang (Kluwer, Boston 2000). ftp://ftp.cs.wisc.edu/math-prog/tech-reports/99-03.ps.

  16. G. Cauwenberghs and T. Tomaso Poggio, in Advances in Neural Information Processing Systems, Vol. 13 (MIT Press, 2001), p. 409.

    Google Scholar 

  17. P. Laskov, C. Gehl, S. Krüger, and K.-R. Müller, J. Mach. Learn. Res. 7, 1909 (2005).

    Google Scholar 

  18. G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed. (Johns Hopkins Univ. Press, Baltimore, 1996).

    MATH  Google Scholar 

  19. J. Kivinen, S. Smola, and R. Williamson, IEEE Trans. Signal Process. 52(8), 2165 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Vishwanathan, N. Schraudolph, and A. Smola, J. Mach. Learn. Res. 6, 1 (2005).

    MathSciNet  Google Scholar 

  21. http://www.kernel-machines.org/software.

  22. A. Karatzoglou, D. Meyer, and K. Hornik, J. Stat. Soft. 15(9), 1 (2006).

    Google Scholar 

  23. http://www.bioconductor.org/packages/devel/bioc/html/MLSeq.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. O. Kadyrova.

Additional information

Original Russian Text © N.O. Kadyrova, L.V. Pavlova, 2015, published in Biofizika, 2015, Vol. 60, No. 1, pp. 18–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadyrova, N.O., Pavlova, L.V. Comparative efficiency of algorithms based on support vector machines for binary classification. BIOPHYSICS 60, 13–24 (2015). https://doi.org/10.1134/S0006350915010145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915010145

Keywords