Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

New Interpretation of the Hill Coefficient

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A modification is proposed for the Hill equation, which describes the cooperative binding of a ligand by a macromolecule. A relative coefficient of cooperativity was introduced as a new parameter in the equation to ensure the conjugation of the Hill coefficient with the number of interacting subunits in the oligomer. This makes it possible to clarify the physical meaning of the Hill coefficient and explains the nature of its non-integer values. Normalization of the relative coefficient of cooperativity additionally provides the opportunity to compare the coefficient values for oligomers with different numbers of protomers. The relative coefficient of cooperativity may be useful in solving a wide range of problems where coordinated interactions of elements are described at all levels of the spatial organization of proteins, nucleic acids, their complexes, and receptors with their mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. R. F. Schmidt and G. Thews, Human Physiology (Springer, Berlin, 2013).

    Google Scholar 

  2. W. F. Boron and E. L. Boulpaep, Medical Physiology (Elsevier Health Sci., Philadelphia, 2017).

    Google Scholar 

  3. R. N. Sladen, Int. Anesthesiol. Clin. 19 (3), 39 (1981). https://doi.org/10.1097/00004311-198119030-00006

    Article  Google Scholar 

  4. E. Antonini, Crit. Care Med. 7, 367 (1979).

    Article  Google Scholar 

  5. S. M. Gadrey, C. E. Lau, R. Clay, et al., Physiol. Meas. 40, 115008 (2019). https://doi.org/10.1088/1361-6579/ab5154

    Article  Google Scholar 

  6. Z. Chu, Y. Wang, G. You, et al., Artif. Cells, Nanomed., Biotechnol. 48, 867 (2020). https://doi.org/10.1080/21691401.2020.1770272

    Article  Google Scholar 

  7. R. M. Winslow, Artif. Cells, Blood Substitutes, Immobilization Biotechnol. 33, 1 (2005). https://doi.org/10.1081/bio-200046634

    Article  Google Scholar 

  8. N. Willis, M. C. Clapham, and W. W. Mapleson, Br. J. Anaesth. 59, 1160 (1987). https://doi.org/10.1093/bja/59.9.1160

    Article  Google Scholar 

  9. J.-A. Collins, A. Rudenski, J. Gibson, et al., Breathe 11, 194 (2015). https://doi.org/10.1183/20734735.001415

    Article  Google Scholar 

  10. M. A. Danish, Cureus 13, e13240 (2021). https://doi.org/10.7759/cureus.13240

    Article  Google Scholar 

  11. J. Melius, Am. J. Crit. Care 3, 353 (1994).

    Article  Google Scholar 

  12. J.-L. Teboul, O. Hamzaoui, and X. Monnet, Crit. Care 15, 1005 (2011). https://doi.org/10.1186/cc10491

    Article  Google Scholar 

  13. A. V. Hill, J. Physiol. 40, 190 (1910).

    Article  ADS  Google Scholar 

  14. G. S. Adair, A. V. Bock, and H. Field, Jr., J. Biol. Chem. 63, 529 (1925).

    Article  Google Scholar 

  15. S. R. Bernard, Bull. Math. Biophys. 22, 391 (1960). https://doi.org/10.1007/BF02476722

    Article  Google Scholar 

  16. I. A. Lavrinenko, G. A. Vashanov, V. Yu. Sulin and Yu. D. Nechipurenko, Biophysics (Moscow) 66, 905 (2021). https://doi.org/10.1134/S0006350921060105

    Article  Google Scholar 

  17. H. Bateman and A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2.

    MATH  Google Scholar 

  18. J. P. Boyd, Chebyshev and Fourier Spectral Methods (Dover, New York, 2001).

    MATH  Google Scholar 

  19. E. Meijering, Proc. IEEE 90, 319 (2002). https://doi.org/10.1109/5.993400

    Article  Google Scholar 

  20. S. A. Frank, Biol. Direct 8, 31 (2013). https://doi.org/10.1186/1745-6150-8-31

    Article  Google Scholar 

  21. M. L. Coval, J. Biol. Chem. 245 (23), 6335 (1970). https://doi.org/10.1016/S0021-9258(18)62614-6

    Article  Google Scholar 

  22. J.-H. S. Hofmeyr and H. Cornish-Bowden, Bioinformatics 13, 377 (1997). https://doi.org/10.1093/bioinformatics/13.4.377

    Article  Google Scholar 

  23. S. Goutelle, M. Maurin, F. Rougier, et al., Fundam. Clin. Pharmacol. 22, 633 (2008). https://doi.org/10.1111/j.1472-8206.2008.00633.x

    Article  Google Scholar 

  24. J. N. Weiss, FASEB J. 11, 835 (1997).

    Article  Google Scholar 

  25. R. M. Winslow, M. Swenberg, R. L. Berger, et al., J. Biol. Chem. 252, 2331 (1977). https://doi.org/10.1016/S0021-9258(17)40559-X

    Article  Google Scholar 

  26. F. M. Dekking, C. Kraaikamp, H. P. Lopuhaa, et al., A Modern Introduction to Probability and Statistics: Understanding Why and How (Springer, London, 2005). https://doi.org/10.1007/1-84628-168-7

    Book  MATH  Google Scholar 

  27. G. Hüfner, Arch. Physiol. 31, 28 (1890).

    Google Scholar 

  28. J. T. Edsall, J. Hist. Biol. 5, 205 (1972). https://doi.org/10.1007/BF00346659

    Article  Google Scholar 

  29. A. H. B. Wu, Tietz Clinical Guide to Laboratory Tests (Elsevier, St. Louis, MO, 2006).

    Google Scholar 

  30. N. Griffon, V. Baudin, W. Dieryck, et al., Protein Sci. 7, 673 (1998). https://doi.org/10.1002/pro.5560070316

    Article  Google Scholar 

  31. N. Kaihnsa, Y. Ren, M. Safey El Din, et al., J. Math. Biol. 81, 1169 (2020). https://doi.org/10.1007/s00285-020-01540-8

  32. H. Abeliovich, Biophys. J. 89, 76 (2005). https://doi.org/10.1529/biophysj.105.060194

    Article  ADS  Google Scholar 

  33. O. Rapp and O. Yifrach, PLoS One 12, e0182871 (2017). https://doi.org/10.1371/journal.pone.0182871

    Article  Google Scholar 

  34. H. Dahl, S. Taudorf, D. M. Bailey, et al., Exp. Physiol. 105, 1063 (2020). https://doi.org/10.1113/EP088615

    Article  Google Scholar 

  35. C. F. S. Bonafe, D. F. L. Neto, E. A. Martinez, et al., Chem. Pap. 74, 2861 (2020). https://doi.org/10.1007/s11696-020-01125-1

    Article  Google Scholar 

  36. S. Srinivasan, F. H. Waghu, S. Idicula-Thomas, et al., Biochim. Biophys. Acta, Biomembr. 1862, 183242 (2020). https://doi.org/10.1016/j.bbamem.2020.183242

  37. A. Horovitz and T. Mondal, J. Phys. Chem. B 125, 70 (2021). https://doi.org/10.1021/acs.jpcb.0c09351

    Article  Google Scholar 

  38. M. Żebrowska, M. Weippert, and M. Petelczyc, Front. Physiol. 12, 695569 (2021). https://doi.org/10.3389/fphys.2021.695569

  39. L. Acerenza and E. Mizraji, Biochim. Biophys. Acta 1339, 155 (1997). https://doi.org/10.1016/s0167-4838(96)00228-2

    Article  Google Scholar 

  40. A. Horovitz, Proc. R. Soc. London, Ser. B 229, 315 (1986). https://doi.org/10.1098/rspb.1986.0088

    Article  ADS  Google Scholar 

  41. T. R. Chay and C. Ho, Proc. Natl. Acad. Sci. U. S. A. 70, 3914 (1973). https://doi.org/10.1073/pnas.70.12.3914

    Article  ADS  Google Scholar 

  42. I. M. Klotz, J. Biol. Chem. 279, 1 (2004). https://doi.org/10.1074/jbc.X300006200

    Article  Google Scholar 

  43. H. A. Saroff, Biochemistry 30, 10085 (1991). https://doi.org/10.1021/bi00106a004

    Article  Google Scholar 

  44. Yu. D. Nechipurenko, Analysis of Binding of Biologically Active Compounds to Nucleic Acids (IKI, Moscow–Izhevsk, 2015) [in Russian].

  45. D. Leipply and D. E. Draper, Biochemistry 49, 1843 (2010). https://doi.org/10.1021/bi902036j

    Article  Google Scholar 

  46. A. F. Kolodziej, T. Tan, and D. E. Koshland, Jr., Biochemistry 35, 14782 (1996). https://doi.org/10.1021/bi961481v

    Article  Google Scholar 

  47. A. Whitty, Nat. Chem. Biol. 4, 435 (2008). https://doi.org/10.1038/nchembio0808-435

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A. Buchel’nikov and A. Zasedatelev for fruitful discussion and helpful advice, and to the reviewers for critical analysis of the manuscript and valuable comments.

Funding

This work was supported by the Program of Basic Research in the Russian Federation for a Long Period of Time (from 2021 to 2030) (project no. 121052600299-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Lavrinenko.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrinenko, I.A., Vashanov, G.A. & Nechipurenko, Y.D. New Interpretation of the Hill Coefficient. BIOPHYSICS 67, 171–174 (2022). https://doi.org/10.1134/S0006350922020142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922020142

Keywords: