Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Orbital quantization in a system of edge Dirac fermions in nanoperforated graphene

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The dependence of the electric resistance R of nanoperforated graphene samples on the position of the Fermi level E F, which is varied by the gate voltage V g, has been studied. Nanoperforation has been performed by irradiating graphene samples on a Si/SiO2 substrate by heavy (xenon) or light (helium) ions. A series of regular peaks have been revealed on the R(V g) dependence at low temperatures in zero magnetic field. These peaks are attributed to the passage of E F through an equidistant set of levels formed by orbitally quantized states of edge Dirac fermions rotating around each nanohole. The results are in agreement with the theory of edge states for massless Dirac fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  3. K. Nakada, M. Fujita, and M. S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).

    Article  ADS  Google Scholar 

  4. A. R. Akhmerov and C. W. J. Beenakker, Phys. Rev. B 77, 085423 (2008).

    Article  ADS  Google Scholar 

  5. V. A. Volkov and I. V. Zagorodnev, Low Temp. Phys. 35, 2 (2009).

    Article  ADS  Google Scholar 

  6. Yu. I. Latyshev, A. Yu. Latyshev, A. P. Orlov, et al., JETP Lett. 90, 480 (2009).

    Article  ADS  Google Scholar 

  7. Yu. I. Latyshev, A. P. Orlov, E. G. Shustin, et al., J. Phys.: Conf. Ser. 248, 012001 (2010).

    Article  ADS  Google Scholar 

  8. V. A. Skuratov, S. J. Zinkle, A. E. Efimov, et al., Nucl. Instrum. Methods Phys. Res. B 203, 136 (2003).

    Article  ADS  Google Scholar 

  9. V. A. Volkov and T. N. Pinsker, Sov. Phys. Solid State 23, 1022 (1981).

    Google Scholar 

  10. B. A. Volkov, B. G. Idlis, and M. Sh. Usmanov, Phys. Usp. 38, 761 (1995).

    Article  ADS  Google Scholar 

  11. G. Tkachov and M. Hentschel, Eur. Phys. J. B 69, 499 (2009).

    Article  ADS  Google Scholar 

  12. J. A. M. van Ostaay, A. R. Akhmerov, C. W. J. Beenakker, and M. Wimmer, Phys. Rev. B 84, 195434 (2011).

    Article  ADS  Google Scholar 

  13. B. A. Volkov and O. A. Pankratov, JETP Lett. 42, 178 (1985).

    ADS  Google Scholar 

  14. Y. Latyshev, A. Orlov, V. Volkov, and P. Monceau, in Proceedings of the International Conference of High Magnetic Fields in Semiconductor Physics, HMF-20, Chamonix Mont-Blans, France, July 22–27, 2012.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.I. Latyshev, A.P. Orlov, A.V. Frolov, V.A. Volkov, I.V. Zagorodnev, V.A. Skuratov, Yu.V. Petrov, O.F. Vyvenko, D.Yu. Ivanov, M. Konczykowski, P. Monceau, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 98, No. 4, pp. 242–246.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latyshev, Y.I., Orlov, A.P., Frolov, A.V. et al. Orbital quantization in a system of edge Dirac fermions in nanoperforated graphene. Jetp Lett. 98, 214–218 (2013). https://doi.org/10.1134/S0021364013170098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013170098

Keywords