Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum Cherenkov radiation at the motion of a small neutral particle parallel to the surface of a transparent dielectric

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Quantum Cherenkov radiation and quantum friction at the motion of a small neutral particle parallel to the surface of a transparent dielectric with the refractive index n have been studied in a fully relativistic theory. Radiation appears at velocities above the threshold value, v > v c = c/n. The friction force in the particle–plate configuration has been derived from the friction force in the plate–plate configuration under the assumption that one of the plates is significantly decharged. A decrease in the kinetic energy of the particle near the threshold velocity is due to its radiation and near the speed of light is determined by the heat power absorbed by the particle in the rest frame. The powers of quantum and classical Cherenkov radiation can be comparable in the relativistic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Cherenkov, Dokl. Akad. Nauk SSSR 2, 451 (1934).

    Google Scholar 

  2. S. I. Vavilov, Dokl. Akad. Nauk SSSR 2, 457 (1934).

    Google Scholar 

  3. P. A. Cherenkov, Phys. Rev. 52, 378 (1937).

    Article  ADS  Google Scholar 

  4. I. E. Tamm and I. M. Frank, Dokl. Akad. Nauk SSSR 14, 107 (1937).

    Google Scholar 

  5. I. E. Tamm, Usp. Phys. Nauk 68, 387 (1959), Science 131, 206 (1960).

    Article  Google Scholar 

  6. V. L. Ginzburg, Phys. Usp. 39, 973 (1996).

    Article  ADS  Google Scholar 

  7. I. M. Frank, J. Phys. USSR 7, 49 (1943).

    Google Scholar 

  8. V. L. Ginzburg, J. Phys. USSR 9, 353 (1945).

    Google Scholar 

  9. I. M. Frank and V. L. Ginzburg, J. Phys. (USSR) 9, 353 (1945).

    Google Scholar 

  10. M. F. Maghrebi, R. Golestanian, and M. Kardar, Phys. Rev. A 88, 042509 (2013).

    Article  ADS  Google Scholar 

  11. H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).

    Google Scholar 

  12. E. M. Lifshitz, Sov. Phys. JETP 2, 73 (1956).

    MathSciNet  Google Scholar 

  13. Casimir Physics, Ed. by D. A. R. Dalvit, P. Milonni, D. Roberts, and F. da Rose (Springer, Berlin, 2011).

  14. A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291 (2007).

    Article  ADS  Google Scholar 

  15. A. Einstein and L. Hopf, Ann. Phys. (Leipzig) 33, 1105 (1910).

    Article  Google Scholar 

  16. A. Einstein, Phys. Z. 18, 121 (1917).

    Google Scholar 

  17. J. B. Pendry, J. Mod. Opt. 45, 2389 (1998).

    Article  ADS  Google Scholar 

  18. J. B. Pendry, J. Phys.: Condens. Matter 9, 10301 (1997).

    ADS  Google Scholar 

  19. A. I. Volokitin and B. N. J. Persson, J. Phys.: Condens. Matter 11, 345 (1999).

    ADS  Google Scholar 

  20. A. I. Volokitin and B. N. J. Persson, Phys. Rev. Lett. 91, 106101 (2003).

    Article  ADS  Google Scholar 

  21. A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 68, 155420 (2003).

    Article  ADS  Google Scholar 

  22. A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 78, 155437 (2008).

    Article  ADS  Google Scholar 

  23. A. I. Volokitin and B. N. J. Persson, Phys. Rev. Lett. 106, 094502 (2011).

    Article  ADS  Google Scholar 

  24. M. S. Tomassone and A. Widom, Phys. Rev. B 56, 4938 (1997)

    Article  ADS  Google Scholar 

  25. A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 65, 115419 (2002)

    Article  ADS  Google Scholar 

  26. G. V. Dedkov and A. A. Kyasov, Phys. Lett. A 339, 212 (2005).

    Article  ADS  Google Scholar 

  27. G. V. Dedkov and A. A. Kyasov, J. Phys.: Condens. Matter 20, 354006 (2008).

    Google Scholar 

  28. G. Barton, New J. Phys. 12, 113045 (2010).

    Article  ADS  Google Scholar 

  29. J. S. Høye and I. Brevik, Entropy 15, 3045 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  30. J. S. Høye and I. Brevik, Eur. Phys. J. D 68, 61 (2014).

    Article  ADS  Google Scholar 

  31. M. F. Maghrebi, R. Golestanian, and M. Kardar, Phys. Rev. D 87, 025016 (2013).

    Article  ADS  Google Scholar 

  32. F. Intravaia, R. O. Behunin, and D. A. R. Dalvit, Phys. Rev. A 89, 050101(R) (2014).

    Article  ADS  Google Scholar 

  33. A. I. Volokitin and B. N. J. Persson, New J. Phys. 16, 118001 (2014).

    Article  ADS  Google Scholar 

  34. G. Pieplow and C. Henkel, New J. Phys. 15, 023027 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  35. G. Pieplow and C. Henkel, J. Phys.: Condens. Matter 27, 214001 (2015).

    ADS  Google Scholar 

  36. V. Mkrtchian, V. A. Parsegian, R. Podgornik, and W. M. Saslow, Phys. Rev. Lett. 91, 220801 (2003).

    Article  ADS  Google Scholar 

  37. G. V. Dedkov and A. A. Kyasov, Nucl. Instrum. Methods Phys. Res. B 268, 599 (2010).

    Article  ADS  Google Scholar 

  38. G. Lach, M. DeKieviet, and U. D. Jentschura, Phys. Rev. Lett. 108, 043005 (2012).

    Article  ADS  Google Scholar 

  39. U. D. Jentschura, G. Lach, M. de Kieviet, and K. Pachucki, Phys. Rev. Lett. 114, 043001 (2015).

    Article  ADS  Google Scholar 

  40. A. I. Volokitin, Phys. Rev. A 91, 032505 (2015).

    Article  ADS  Google Scholar 

  41. A. I. Volokitin, JETP Lett. 101, 427 (2015).

    Article  ADS  Google Scholar 

  42. T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 66, 1216 (1991).

    Article  ADS  Google Scholar 

  43. U. Sivan, P. M. Solomon, and H. Shtrikman, Phys. Rev. Lett. 68, 1196 (1992).

    Article  ADS  Google Scholar 

  44. S. Kim, I. Jo, J. Nah, Z. Yao, S. K. Banerjee, and E. Tutuc, Phys. Rev. B 83, 161401 (2011).

    Article  ADS  Google Scholar 

  45. R. V. Gorbachev, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. Tudorovskyiy, T. V. Grigorieva, A. H. MacDonald, K. Watanabe, T. Taniguchi, and L. P. Ponamarenko, Nature Phys. 8, 896 (2012).

    Article  ADS  Google Scholar 

  46. M. Freitag, M. Steiner, Y. Martin, V. Perebeinos, Z. Chen, J. C. Tsang, and P. Avouris, Nano Lett. 9, 1883 (2009).

    Article  ADS  Google Scholar 

  47. A. I. Volokitin and B. N. J. Persson, J. Phys.: Condens. Matter 13, 859 (2001).

    ADS  Google Scholar 

  48. A. I. Volokitin and B. N. J. Persson, Eur. Phys. Lett. 103, 24002 (2013).

    Article  ADS  Google Scholar 

  49. B. M. Bolotovskii, Sov. Phys. Usp. 4, 781 (1962).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Volokitin.

Additional information

Original Russian Text © A.I. Volokitin, B.N.Y. Persson, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 103, No. 4, pp. 251–257.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volokitin, A.I., Persson, B.N.Y. Quantum Cherenkov radiation at the motion of a small neutral particle parallel to the surface of a transparent dielectric. Jetp Lett. 103, 228–233 (2016). https://doi.org/10.1134/S0021364016040147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016040147

Keywords