Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Topology of the momentum space, Wigner transformations, and a chiral anomaly in lattice models

  • Methods of Theoretical Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Lattice models that can be used to discretize the quantum field theory with massless fermions have been discussed. These models can also be used to describe Dirac semimetals. It has been shown that the axial current for general lattice models should be redefined in order for the usual expression for the chiral anomaly to remain valid. In this case, in the presence of a time-independent potential of the external electromagnetic field, the formalism of Wigner transformations allows relating the divergence of the axial current to a topological invariant in the momentum space that is defined for a system in equilibrium and is responsible for the stability of the Fermi point. The evaluated expression is the axial anomaly for general lattice models. This expression has been illustrated for models with Wilson fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Yu. Morozov, Sov. Phys. Usp. 29, 993 (1986).

    Article  ADS  Google Scholar 

  2. M. A. Shifman, Sov. Phys. Usp. 32, 289 (1989).

    Article  ADS  Google Scholar 

  3. Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Science 343, 864 (2014), arXiv:1310.0391.

    Article  ADS  Google Scholar 

  4. M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, Ch. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, Nat. Commun. 05, 3786 (2014), arXiv:1309.7892.

    Google Scholar 

  5. S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, Phys. Rev. Lett. 113, 027603 (2014), arXiv:1309.7978.

    Article  ADS  Google Scholar 

  6. E. Seiler and I. O. Stamatescu, Phys. Rev. D 25, 2177 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  7. N. Kawamoto and K. Shigemoto, Phys. Lett. B 120, 183 (1983).

    Article  ADS  Google Scholar 

  8. K. Fujikawa, Z. Phys. C 25, 179 (1984).

    Article  ADS  Google Scholar 

  9. T. Reisz and H. J. Rothe, Phys. Lett. B 455, 246 (1999).

    Article  ADS  Google Scholar 

  10. J. Ambjorn, J. Greensite, and C. Peterson, Nucl. Phys. B 221, 381 (1983).

    Article  ADS  Google Scholar 

  11. H. J. Rothe and N. Sadooghi, Phys. Rev. D 58, 074502 (1998).

    Article  ADS  Google Scholar 

  12. L. H. Karsten and J. Smit, Nucl. Phys. B 183, 103 (1981).

    Article  ADS  Google Scholar 

  13. H. Neuberger, Phys. Lett. B 417, 141 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Luscher, Phys. Lett. B 428, 342 (1998).

    Article  ADS  Google Scholar 

  15. P. Hasenfratz, V. Laliena, and F. Niedermeyer, Phys. Lett. B 427, 125 (1998).

    Article  ADS  Google Scholar 

  16. A. A. Burkov, J. Phys.: Condens. Matter 27, 113201 (2015).

    ADS  Google Scholar 

  17. P. Goswami, J. H. Pixley, and S. Das Sarma, Phys. Rev. B 92, 075205 (2015).

    Article  ADS  Google Scholar 

  18. M. N. Chernodub and M. Zubkov, Phys. Rev. B 95, 115410 (2017).

    Article  ADS  Google Scholar 

  19. M. A. Zubkov, Ann. Phys. 360, 655 (2015).

    Article  Google Scholar 

  20. A. V. Balatskii, G. E. Volovik, and V. A. Konyshev, Sov. Phys. JETP 63, 1194 (1986).

    Google Scholar 

  21. G. E. Volovik, Phys. Rep. 351, 195 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  22. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  23. M. A. Zubkov, Ann. Phys. 373, 298 (2016).

    Article  ADS  Google Scholar 

  24. Z. V. Khaidukov and M. A. Zubkov, Phys. Rev. D 95, 074502 (2017), arXiv:1701.03368 [hep-lat].

    Article  ADS  Google Scholar 

  25. K. G. Wilson, Phys. Rev. D 10, 2445 (1974).

    Article  ADS  Google Scholar 

  26. H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zubkov.

Additional information

Original Russian Text © M.A. Zubkov, Z.V. Khaidukov, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 106, No. 3, pp. 166–172.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubkov, M.A., Khaidukov, Z.V. Topology of the momentum space, Wigner transformations, and a chiral anomaly in lattice models. Jetp Lett. 106, 172–178 (2017). https://doi.org/10.1134/S0021364017150139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017150139