Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

NMR Shifts in 3He in Aerogel Induced by Demagnetizing Fields

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Magnetic materials generate demagnetizing field that depends on geometry of the sample and results in a shift of magnetic resonance frequency. This phenomenon should occur in porous nanostructures as well, e.g., in globally anisotropic aerogels. Here, we report results of nuclear magnetic resonance experiments with liquid 3He confined in anisotropic aerogels with different types of anisotropy (nematic and planar aerogels). Strands of aerogels in pure 3He are covered by a few atomic layers of paramagnetic solid 3He which magnetization follows the Curie–Weiss law. We have found that in our samples the nuclear magnetic resonance shift in solid 3He is clearly seen at ultralow temperatures and depends on value and orientation of the magnetic field. The obtained results are well described by a model of a system of non-interacting paramagnetic cylinders. The shift is proportional to the magnetization of solid 3He and may complicate nuclear magnetic resonance experiments with superfluid 3He in aerogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Kittel, Phys. Rev. 73, 155 (1948).

    Article  ADS  Google Scholar 

  2. G. Tastevin, J. Low Temp. Phys. 89, 317 (1992).

    Article  ADS  Google Scholar 

  3. D. Candela, M. E. Hayden, and P. J. Nacher, Phys. Rev. Lett. 73, 2587 (1994).

    Article  ADS  Google Scholar 

  4. H. M. Bozler and D. M. Bates, Phys. Rev. B 27, 6992 (1983).

    Article  ADS  Google Scholar 

  5. M. R. Freeman, R. S. Germain, E. V. Thuneberg, and R. C. Richardson, Phys. Rev. Lett. 60, 596 (1988).

    Article  ADS  Google Scholar 

  6. A. I. Ahonen, T. A. Alvesalo, T. Haavasoja, and M. C. Veuro, Phys. Rev. Lett. 41, 494 (1978).

    Article  ADS  Google Scholar 

  7. J. A. Sauls, Yu. M. Bunkov, E. Collin, H. Godfrin, and P. Sharma, Phys. Rev. B 72, 024507 (2005).

    Article  ADS  Google Scholar 

  8. E. Collin, S. Triqueneaux, Yu. M. Bunkov, and H. Godfrin, Phys. Rev. B 80, 094422 (2009).

    Article  ADS  Google Scholar 

  9. D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).

    Book  MATH  Google Scholar 

  10. http://www.anftechnology.com.

  11. V. E. Asadchikov, R. Sh. Askhadullin, V. V. Volkov, V.V. Dmitriev, N. K. Kitaeva, P. N. Martynov, A. A. Osipov, A. A. Senin, A. A. Soldatov, D. I. Chekrygina, and A. N. Yudin, JETP Lett. 101, 556 (2015).

    Article  ADS  Google Scholar 

  12. V. V. Volkov, V. V. Dmitriev, D. V. Zolotukhin, A. A. Soldatov, and A. N. Yudin, Instrum. Exp. Tech. 60, 737 (2017).

    Article  Google Scholar 

  13. V. V. Dmitriev, M. S. Kutuzov, L. A. Melnikovsky, B. D. Slavov, A. A. Soldatov, and A. N. Yudin, JETP Lett. 108, 754 (2018).

    Google Scholar 

  14. V. V. Dmitriev, L. A. Melnikovsky, A. A. Senin, A. A. Soldatov, and A. N. Yudin, JETP Lett. 101, 808 (2015).

    Article  ADS  Google Scholar 

  15. R. Sh. Askhadullin, V. V. Dmitriev, D. A. Krasnikhin, P. N. Martinov, A. A. Osipov, A. A. Senin, and A. N. Yudin, JETP Lett. 95, 326 (2012).

    Article  ADS  Google Scholar 

  16. R. Blaauwgeers, M. Blažková, M. Clovecko, V. B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R. E. Solntsev, and D. E. Zmeev, J. Low Temp. Phys. 146, 537 (2007).

    Article  ADS  Google Scholar 

  17. V. V. Dmitriev, A. A. Soldatov, and A. N. Yudin, Phys. Rev. Lett. 120, 075301 (2018).

    Article  ADS  Google Scholar 

  18. A. Schuhl, S. Maegawa, M. W. Meisel, and M. Chapellier, Phys. Rev. B 36, 6811 (1987).

    Article  ADS  Google Scholar 

  19. M. R. Freeman and R. C. Richardson, Phys. Rev. B 41, 11011 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Dmitriev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, V.V., Kutuzov, M.S., Soldatov, A.A. et al. NMR Shifts in 3He in Aerogel Induced by Demagnetizing Fields. Jetp Lett. 108, 816–819 (2018). https://doi.org/10.1134/S0021364018240037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018240037