Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Suppression of Superconductivity in Disordered Films: Interplay of Two-Dimensional Diffusion and Three-Dimensional Ballistics

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Suppression of the critical temperature in homogeneously disordered superconducting films is a consequence of the disorder-induced enhancement of Coulomb repulsion. We demonstrate that for the majority of thin films studied now this effect cannot be completely explained under the assumption of two-dimensional diffusive nature of electron motion. The main contribution to the suppression of Tc arises from the correction to the electron-electron interaction constant coming from small scales of the order of the Fermi wavelength that leads to the critical temperature shift δTc/Tc0 ∼ − 1/kFl, where kF is the Fermi momentum and l is the mean free path. Thus almost for all superconducting films that follow the fermionic scenario of Tc suppression with decreasing the film thickness, this effect is caused by the proximity to the three-dimensional Anderson localization threshold and is controlled by the parameter kFl rather than the sheet resistance of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Teplov, Sov. Phys. JETP 44, 422 (1976).

    ADS  Google Scholar 

  2. Z. Wang, A. Kawakami, Y. Uzawa, and B. Komiyama, J. Appl. Phys. 79, 7837 (1996).

    ADS  Google Scholar 

  3. A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, Phys. Rev. B 80, 054510 (2009).

    ADS  Google Scholar 

  4. Y. Noat, V. Cherkez, C. Brun, T. Cren, C. Carbillet, F. Debontridder, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and D. Roditchev, Phys. Rev. B 88, 014503 (2013).

    ADS  Google Scholar 

  5. K. Makise, T. Odou, S. Ezaki, T. Asano, and B. Shinozaki, Mater. Res. Express 2, 106001 (2015).

    ADS  Google Scholar 

  6. L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, J. Appl. Phys. 109, 033908 (2011).

    ADS  Google Scholar 

  7. S. Ezaki, K. Makise, B. Shinozaki, T. Odo, T. Asano, H. Terai, T. Yamashita, S. Miki, and Z. Wang, J. Phys.: Condens. Matter 24, 475702 (2012).

    ADS  Google Scholar 

  8. M. Chand, G. Saraswat, A. Kamlapure, M. Mondal, S. Kumar, J. Jesudasan, V. Bagwe, L. Benfatto, V. Tripathi, and P. Raychaudhuri, Phys. Rev. B 85, 014508 (2012).

    ADS  Google Scholar 

  9. C. Carbillet, V. Cherkez, M. A. Skvortsov, M. V. Feigel’man, F. Debontridder, L. B. Ioffe, V. S. Stolyarov, K. Ilin, M. Siegel, C. Noûs, D. Roditchev, T. Cren, and C. Brun, Phys. Rev. B 102, 024504 (2020).

    ADS  Google Scholar 

  10. B. Sacépé, C. Chapelier, T. I. Baturina, V. M. Vinokur, M. R. Baklanov, and M. Sanquer, Phys. Rev. Lett. 101, 157006 (2008).

    ADS  Google Scholar 

  11. J. M. Graybeal and M. R. Beasley, Phys. Rev. B 29, 4167 (1984).

    ADS  Google Scholar 

  12. D. Lotnyk, O. Onufriienko, T. Samuely, O. Shylenko, V. Komanický, P. Szabó, A. Feher, and P. Samuely, Low Temp. Phys. 43, 919 (2017).

    ADS  Google Scholar 

  13. N. Ya. Fogel, E. I. Buchstab, A. S. Pokhila, A. I. Erenburg, and V. Langer, Phys. Rev. B 53, 71 (1996).

    ADS  Google Scholar 

  14. A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, Supercond. Sci. Technol. 30, 084010 (2017).

    ADS  Google Scholar 

  15. P. Szabó, T. Samuely, V. Hašková, J. Kačmarčík, M. Žemlička, M. Grajcar, J. G. Rodrigo, and P. Samuely, Phys. Rev. B 93, 014505 (2016).

    ADS  Google Scholar 

  16. H. Raffy, R. B. Laibowitz, P. Chaudhari, and S. Maekawa, Phys. Rev. B 28, 6607 (1983).

    ADS  Google Scholar 

  17. D. Shahar and Z. Ovadyahu, Phys. Rev. B 46, 10917 (1992).

    ADS  Google Scholar 

  18. M. Strongin, R. S. Thompson, O. F. Kammerer, and J. E. Crow, Phys. Rev. B 1, 1078 (1970).

    ADS  Google Scholar 

  19. D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989).

    ADS  Google Scholar 

  20. M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990).

    ADS  Google Scholar 

  21. V. F. Gantmakher and V. T. Dolgopolov, Phys. Usp. 53, 1 (2010).

    ADS  Google Scholar 

  22. I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B 92, 014506 (2015).

    ADS  Google Scholar 

  23. A. Kapitulnik, S. A. Kivelson, and B. Spivak, Rev. Mod. Phys. 91, 011002 (2019).

    ADS  Google Scholar 

  24. B. Sacépé, M. Feigel’man, and T. M. Klapwijk, Nat. Phys. 16, 734 (2020).

    Google Scholar 

  25. M. V. Feigel’man, A. I. Larkin, and M. A. Skvortsov, Phys. Rev. Lett. 86, 1869 (2001).

    ADS  Google Scholar 

  26. M. V. Feigel’man, L. B. Ioffe, V. E. Kravtsov, and E. A. Yuzbashyan, Phys. Rev. Lett. 98, 027001 (2007).

    ADS  Google Scholar 

  27. M. V. Feigel’man, L. B. Ioffe, V. E. Kravtsov, and E. Cuevas, Ann. Phys. 325, 1390 (2010).

    ADS  Google Scholar 

  28. B. Sacépé, T. Dubouchet, C. Chapelier, M. Sanquer, M. Ovadia, D. Shahar, M. V. Feigel’man, and L. B. Ioffe, Nat. Phys. 7, 239 (2011).

    Google Scholar 

  29. B. L. Al’tshuler and A. G. Aronov, Sov. Phys. JETP 50, 968 (1979).

    ADS  Google Scholar 

  30. B. L. Altshuler and A. G. Aronov, Electron—Electron Interaction in Disordered Systems, Ed. by A. L. Efros and M. Pollak (North-Holland, Amsterdam, 1985).

  31. P. W. Anderson, K. A. Muttalib, and T. V. Ramakrishnan, Phys. Rev. B 28, 117 (1983).

    ADS  Google Scholar 

  32. H. Fukuyama, H. Ebisawa, and S. Maekawa, J. Phys. Soc. Jpn. 53, 3560 (1984).

    ADS  Google Scholar 

  33. B. Rabatin and R. Hlubina, Phys. Rev. B 98, 184519 (2018).

    ADS  Google Scholar 

  34. T. R. Kirkpatrick and D. Belitz, Phys. Rev. B 34, 2168 (1986).

    ADS  Google Scholar 

  35. P. W. Adams, D. A. Browne, and M. A. Paalanen, Phys. Rev. B 45, 8837 (1992).

    ADS  Google Scholar 

  36. A. M. Rudin, I. L. Aleiner, and L. I. Glazman, Phys. Rev. B 55, 9322 (1997).

    ADS  Google Scholar 

  37. A. A. Koulakov, Phys. Rev. B 62, 6858 (2000).

    ADS  Google Scholar 

  38. D. S. Antonenko and M. A. Skvortsov, Phys. Rev. B 101, 064204 (2020).

    ADS  Google Scholar 

  39. B. Keck and A. Schmid, J. Low Temp. Phys. 24, 611 (1976).

    ADS  Google Scholar 

  40. D. Belitz, J. Phys. F: Met. Phys. 15, 2315 (1985).

    ADS  Google Scholar 

  41. D. Belitz, Phys. Rev. B 35, 1636 (1987).

    ADS  Google Scholar 

  42. D. Belitz, Phys. Rev. B 35, 1651 (1987).

    ADS  Google Scholar 

  43. D. Belitz, Phys. Rev. B 36, 47 (1987).

    ADS  Google Scholar 

  44. A. M. Finkel’stein, Phys. B (Amsterdam, Neth.) 197, 636 (1994).

    ADS  Google Scholar 

  45. S. Maekawa and H. Fukuyama, J. Phys. Soc. Jpn. 51, 1380 (1982).

    ADS  Google Scholar 

  46. S. Maekawa and H. Fukuyama, J. Phys. Soc. Jpn. 52, 1352 (1983).

    ADS  Google Scholar 

  47. Yu. N. Ovchinnikov, Sov. Phys. JETP 37, 366 (1973).

    ADS  Google Scholar 

  48. H. Takagi and Y. Kuroda, Solid State Commun. 41, 643 (1982).

    ADS  Google Scholar 

  49. H. Ebisawa, H. Fukuyama, and S. Maekawa, J. Phys. Soc. Jpn. 54, 2257 (1985).

    ADS  Google Scholar 

  50. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

    ADS  Google Scholar 

  51. L. P. Gorkov, A. I. Larkin, and D. E. Khmelnitsky, JETP Lett. 30, 228 (1979).

    ADS  Google Scholar 

  52. A. M. Finkel’stein, JETP Lett. 45, 46 (1987).

    ADS  Google Scholar 

  53. M. V. Feigel’man and M. A. Skvortsov, Phys. Rev. Lett. 109, 147002 (2012).

    ADS  Google Scholar 

  54. H. Kim, A. Ghimire, S. Jamali, T. K. Djidjou, J. M. Gerton, and A. Rogachev, Phys. Rev. B 86, 024518 (2012).

    ADS  Google Scholar 

  55. K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge Univ. Press, Cambridge, 1996).

    MATH  Google Scholar 

  56. A. M. Finkelstein, Electron Liquid in Disordered Conductors, Vol. 14 of Soviet Scientific Reviews, Ed. by I. M. Khalatnikov (Harwood Academic, Glasgow, 1990).

  57. I. S. Burmistrov, J. Exp. Theor. Phys. 129, 669 (2019).

    ADS  Google Scholar 

  58. F. Couedo, O. Crauste, L. Bergé, Y. Dolgorouky, C. Marrache-Kikuchi, and L. Dumoulin, J. Phys.: Conf. Ser. 400, 022011 (2012).

    Google Scholar 

  59. Y. Ivry, C.-S. Kim, A. E. Dane, D. De Fazio, A. N. McCaughan, K. A. Sunter, Q. Zhao, and K. K. Berggren, Phys. Rev. B 90, 214515 (2014).

    ADS  Google Scholar 

  60. C. Brun, T. Cren, V. Cherkez, F. Debontridder, S. Pons, D. Fokin, M. C. Tringides, S. Bozhko, L. B. Ioffe, B. L. Altshuler, and D. Roditchev, Nat. Phys. 10, 444 (2014).

    Google Scholar 

  61. N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A New Method in the Theory of Superconductivity (Consultants Bureau, New York, 1959).

    Google Scholar 

  62. P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).

    ADS  Google Scholar 

  63. W. L. McMillan, Phys. Rev. 167, 331 (1968).

    ADS  Google Scholar 

  64. P. W. Anderson, Phys. Chem. Sol. 11, 26 (1959).

    ADS  Google Scholar 

  65. A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 8, 1090 (1959).

    Google Scholar 

  66. A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 9, 220 (1959).

    Google Scholar 

  67. S. Hikami, Phys. Rev. B 24, 2671 (1981).

    ADS  Google Scholar 

  68. N. A. Stepanov and M. A. Skvortsov, Phys. Rev. B 97, 144517 (2018).

    ADS  Google Scholar 

  69. B. A. van Tiggelen and S. E. Skipetrov, Phys. Rev. E 73, 045601 (2006).

    ADS  Google Scholar 

  70. I. E. Smolyarenko and B. L. Altshuler, Phys. Rev. B 55, 10451 (1997).

    ADS  Google Scholar 

  71. B. L. Altshuler and A. G. Aronov, Solid State Commun. 30, 115 (1979).

    ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to I.S. Burmistrov, M.V. Feigel’man, A.M. Finkel’stein, P. Samuely, P. Szabó, K.S. Tikhonov, and P.M. Ostrovsky for useful discussions.

Funding

This work was supported by the Russian Science Foundation, project no. 20-12-00361.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. S. Antonenko or M. A. Skvortsov.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 7, pp. 466–474.

Supplementary Material

11448_2020_2425_MOESM1_ESM.pdf

Suppression of Superconductivity in Disordered Films: Interplay of Two-Dimensional Diffusion and Three-Dimensional Ballistics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonenko, D.S., Skvortsov, M.A. Suppression of Superconductivity in Disordered Films: Interplay of Two-Dimensional Diffusion and Three-Dimensional Ballistics. Jetp Lett. 112, 428–436 (2020). https://doi.org/10.1134/S0021364020190017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020190017