Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Determinization of ordinal automata

  • Automata Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

It is proved that for each nondeterministic ordinal automaton there exists a deterministic ordinal automaton which is equivalent to the original one for all countable ordinals. An upper bound for the number of states of the deterministic automaton is double exponential in the number of states of the nondeterministic automaton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rabin, M.O. and Scott, D., Finite Automata and Their Decision Problems, IBM J. Res. Develop., 1959, vol. 3, no. 2, pp. 114–125.

    Article  MathSciNet  Google Scholar 

  2. Büchi, J.R., Weak Second-Order Arithmetic and Finite Automata, Z. Math. Logik Grundlagen Math., 1960, vol. 6, pp. 66–92.

    Article  MathSciNet  MATH  Google Scholar 

  3. Büchi, J.R., On a Decision Method in Restricted Second-Order Arithmetics, Proc. 1960 Int. Congress on Logic, Methodology and Philosophy of Science, Nagel, E., Suppes, P., and Tarski, A., Eds., Stanford, CA: Stanford Univ. Press, 1962, pp. 1–11.

    Google Scholar 

  4. Safra, S., On the Complexity of ω-Automata, in Proc. 29th Ann. Sympos. on Foundations of Computer Science, White Plains, NY, 1988, pp. 319–327.

  5. Muller, D.E., Infinite Sequences and Finite Machines, in Proc. 4th Ann. Sympos. on Switching Circuit Theory and Logical Design, Chicago, IL, 1963, New York: IEEE Press, 1963, pp. 3–16.

    Google Scholar 

  6. McNaughton, R., Testing and Generating Infinite Sequences by a Finite Automaton, Inform. Control, 1966, vol. 9, no. 5, pp. 521–530.

    Article  MathSciNet  MATH  Google Scholar 

  7. Rabin, M.O., Automata on Infinite Objects and Church’s Problem, Providence, R.I.: Amer. Math. Soc., 1972.

    MATH  Google Scholar 

  8. Büchi, J.R., The Monadic Second-Order Theory of ω 1, Decidable Theories II, Müller, G.H. and Siefkes, D., Eds., Lect. Notes Math., vol. 328, Berlin: Springer, 1973, pp. 1–127.

    Chapter  Google Scholar 

  9. Schützenberger, M.P., A propos des relations rationnelles fonctionnelles, Proc. Int. Colloq. on Automata, Languages and Programming, Paris, France, 1972, Nivat, M., Ed., Amsterdam: North-Holland, 1973, pp. 103–114.

    Google Scholar 

  10. Trakhtenbrot, B.A. and Barzdin’, Ya.M., Konechnye avtomaty (povedenie i sintez), Moscow: Nauka, 1970. Translated under the title Finite Automata; Behavior and Synthesis, Amsterdam: North-Holland, 1973.

    Google Scholar 

  11. Eilenberg, S., Automata, Languages, and Machines, vol. A, New York: Academic, 1974.

    MATH  Google Scholar 

  12. Choueka, Y., Theories of Automata on ω-Tapes: A Simplified Approach, J. Comput. System Sci., 1974, vol. 8, pp. 117–141.

    Article  MathSciNet  MATH  Google Scholar 

  13. Thomas, W., A Combinatorial Approach to the Theory of ω-Automata, Inform. Control, 1981, vol. 48, no. 3, pp. 261–283.

    Article  MATH  Google Scholar 

  14. Büchi, J.R., Decision Methods in the Theory of Ordinals, Bull. Amer. Math. Soc., 1965, vol. 71, no. 5, pp. 767–770.

    Article  MathSciNet  MATH  Google Scholar 

  15. Bedon, N. and Carton, O., An Eilenberg Theorem for Words on Countable Ordinals, Proc. 3rd Latin American Sympos. on Theoretical Informatics (LATIN’98). Campinas, Brazil. April 20–24, 1998, Lucchesi, C.L. and Moura, A.V., Eds., Lect. Notes Comp. Sci, vol. 1380, Berlin: Springer, 1998, pp. 53–64.

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © An.A. Muchnik, 2013, published in Problemy Peredachi Informatsii, 2013, Vol. 49, No. 2, pp. 58–72.

Supported in part by the Russian Foundation for Basic Research, project nos. 09-01-00709 and 12-01-00864.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muchnik, A.A. Determinization of ordinal automata. Probl Inf Transm 49, 149–162 (2013). https://doi.org/10.1134/S003294601302004X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003294601302004X

Keywords