Abstract
A recently proposed extension of Yang-Mills theory contains non-Abelian tensor gauge fields. The Lagrangian has quadratic kinetic terms, as well as cubic and quartic terms describing nonlinear interaction of tensor gauge fields with the dimensionless coupling constant. We analyze the particle content of non-Abelian tensor gauge fields. In four-dimensional space-time the rank-2 gauge field describes propagating modes of helicity 2 and 0. We introduce interaction of the non-Abelian tensor gauge field with fermions and demonstrate that the free equation of motion for the spinor-vector field correctly describes the propagation of massless modes of helicity 3/2. We have found a new metric-independent gauge invariant density which is a four-dimensional analog of the Chern-Simons density. The Lagrangian augmented by this Chern-Simons-like invariant describes the massive Yang-Mills boson, providing a gauge invariant mass gap for a four-dimensional gauge field theory.
Similar content being viewed by others
References
C. N. Yang and R. L. Mills, “Conservation of Isotopic Spin and Isotopic Gauge Invariance,” Phys. Rev. 96, 191–195 (1954).
S. S. Chern, Topics in Differential Geometry, Ch. III: Theory of Connections (Inst. Adv. Study, Princeton, NJ, 1951).
G. Savvidy, “Non-Abelian Tensor Gauge Fields: Generalization of Yang-Mills Theory,” Phys. Lett. B 625, 341–350 (2005).
G. Savvidy, “Non-Abelian Tensor Gauge Fields. I,” Int. J. Mod. Phys. A 21, 4931–4957 (2006).
G. Savvidy, “Non-Abelian Tensor Gauge Fields. II,” Int. J. Mod. Phys. A 21, 4959–4977 (2006).
S. Coleman and J. Mandula, “All Possible Symmetries of the S Matrix,” Phys. Rev. 159, 1251–1256 (1967).
R. Haag, J. T. Łopuszański, and M. Sohnius, “All Possible Generators of Supersymmetries of the S-Matrix,” Nucl. Phys. B 88, 257–274 (1975).
J. K. Barrett and G. Savvidy, “A Dual Lagrangian for Non-Abelian Tensor Gauge Fields,” Phys. Lett. B 652, 141–145 (2007).
G. Savvidy, “Interaction of Non-Abelian Tensor Gauge Fields,” Arm. J. Math. 1, 1–17 (2008); arXiv: 0804.2003 [hep-th].
W. Rarita and J. Schwinger, “On a Theory of Particles with Half-Integral Spin,” Phys. Rev. 60, 61 (1941).
L. P. S. Singh and C. R. Hagen, “Lagrangian Formulation for Arbitrary Spin. II: The Fermion Case,” Phys. Rev. D 9, 910–920 (1974).
J. Fang and C. Fronsdal, “Massless Fields with Half-Integral Spin,” Phys. Rev. D 18, 3630–3633 (1978).
G. Savvidy, “Solution of Free Field Equations in Non-Abelian Tensor Gauge Field Theory,” Phys. Lett. B 682, 143–149 (2009).
J. M. Cornwall, D. N. Levin, and G. Tiktopoulos, “Uniqueness of Spontaneously Broken Gauge Theories,” Phys. Rev. Lett. 30, 1268–1270 (1973); Erratum: Phys. Rev. Lett. 31, 572 (1973).
C. H. Llewellyn Smith, “High-Energy Behaviour and Gauge Symmetry,” Phys. Lett. B 46, 233–236 (1973).
J. Schwinger, “Gauge Invariance and Mass,” Phys. Rev. 125, 397–398 (1962).
J. Schwinger, “Gauge Invariance and Mass. II,” Phys. Rev. 128, 2425–2429 (1962).
T. Kunimasa and T. Gotō, “Generalization of the Stueckelberg Formalism to the Massive Yang-Mills Field,” Prog. Theor. Phys. 37, 452–464 (1967).
M. Veltman, “Perturbation Theory of Massive Yang-Mills Fields,” Nucl. Phys. B 7, 637–650 (1968).
A. A. Slavnov and L. D. Faddeev, “Massless and Massive Yang-Mills Fields,” Teor. Mat. Fiz. 3(1), 18–23 (1970) [Theor. Math. Phys. 3, 312–316 (1970)].
H. van Dam and M. Veltman, “Massive and Mass-less Yang-Mills and Gravitational Fields,” Nucl. Phys. B 22, 397–411 (1970).
A. A. Slavnov, “Massive Gauge Fields,” Teor. Mat. Fiz. 10(3), 305–328 (1972) [Theor. Math. Phys. 10, 201–217 (1972)].
M. J. G. Veltman, “Nobel Lecture: FromWeak Interactions to Gravitation,” Rev. Mod. Phys. 72, 341–349 (2000).
P. Sikivie, “An Introduction to Technicolor,” Preprint CERN-TH-2951 (1980).
E. Farhi and L. Susskind, “Technicolour,” Phys. Rep. 74, 277–321 (1981).
S. Dimopoulos and J. Ellis, “Challenges for Extended Technicolour Theories,” Nucl. Phys. B 182, 505–528 (1981).
A. A. Slavnov, “Higgs Mechanism as a Collective Effect due to an Extra Dimension,” Teor. Mat. Fiz. 148(3), 339–349 (2006) [Theor. Math. Phys. 148, 1159–1167 (2006)].
S. Deser, R. Jackiw, and S. Templeton, “Three-Dimensional Massive Gauge Theories,” Phys. Rev. Lett. 48, 975–978 (1982).
S. Deser, R. Jackiw, and S. Templeton, “Topologically Massive Gauge Theories,” Ann. Phys. 140, 372–411 (1982).
J. F. Schonfeld, “A Mass Term for Three-Dimensional Gauge Fields,” Nucl. Phys. B 185, 157–171 (1981).
E. Cremmer and J. Scherk, “Spontaneous Dynamical Breaking of Gauge Symmetry in Dual Models,” Nucl. Phys. B 72, 117–124 (1974).
C. R. Hagen, “Action-Principle Quantization of the Antisymmetric Tensor Field,” Phys. Rev. D 19, 2367–2369 (1979).
M. Kalb and P. Ramond, “Classical Direct Interstring Action,” Phys. Rev. D 9, 2273–2284 (1974).
Y. Nambu, “Magnetic and Electric Confinement of Quarks,” Phys. Rep. 23, 250–253 (1976).
V. I. Ogievetskii and I. V. Polubarinov, “The Notoph and Its Possible Interactions,” Yad. Fiz. 4(1), 216–223 (1966) [Sov. J. Nucl. Phys. 4, 156–161 (1967)].
A. Aurilia and Y. Takahashi, “Generalized Maxwell Equations and the Gauge Mixing Mechanism of Mass Generation,” Prog. Theor. Phys. 66, 693–712 (1981).
D. Z. Freedman and P. K. Townsend, “Antisymmetric Tensor Gauge Theories and Non-linear σ-Models,” Nucl. Phys. B 177, 282–296 (1981).
A. A. Slavnov and S. A. Frolov, “Quantization of Non-Abelian Antisymmetric Tensor Field,” Teor. Mat. Fiz. 75(2), 201–211 (1988) [Theor. Math. Phys. 75, 470–477 (1988)].
T. J. Allen, M. J. Bowick, and A. Lahiri, “Topological Mass Generation in (3 + 1)-Dimensions,” Mod. Phys. Lett. A 6, 559–571 (1991).
M. Henneaux, V. E. R. Lemes, C. A. G. Sasaki, S. P. Sorella, O. S. Ventura, and L. C. Q. Vilar, “A No-Go Theorem for the Nonabelian Topological Mass Mechanism in Four Dimensions,” Phys. Lett. B 410, 195–202 (1997); arXiv: hep-th/9707129.
A. Lahiri, “Dynamical Non-Abelian Two-Form: BRST Quantization,” Phys. Rev. D 55, 5045–5050 (1997); arXiv: hep-ph/9609510.
M. Botta Cantcheff, “Doublet Groups, Extended Lie Algebras, and Well Defined Gauge Theories for the Two-Form Field,” Int. J. Mod. Phys. A 20, 2673–2685 (2005); arXiv: hep-th/0310156.
G. Savvidy, “Topological Mass Generation in Four-Dimensional Gauge Theory,” arXiv: 1001.2808 [hep-th].
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Savvidy, G. Non-Abelian tensor gauge fields. Proc. Steklov Inst. Math. 272, 201–215 (2011). https://doi.org/10.1134/S0081543811010196
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0081543811010196