Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Acoustic methods for the nondestructive testing of concrete: A review of foreign publications in the experimental field

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Acoustic methods for experimental studies of the problems of nondestructive testing that are used in the analysis of the strength and other physical properties of concrete are reviewed on the basis of an analysis of foreign publications. The classical through transmission, pulse-echo, and impact-echo methods, changes in the internal structure of concrete under loading, and factors that influence the correlation between the strength and acoustic-wave velocity are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achenbach, J.D., et al., Self-calibrating ultrasonic technique for crack depth measurement, Journ. NDE, 1992, vol. 11, pp. 103–108.

    Google Scholar 

  2. Al-Hunaidi, M.O., Nondestructive evaluation of pavements using spectral analysis of surface waves in the frequency-wave number domain, Journ. NDE, 1996, vol. 15, pp. 71–82.

    Google Scholar 

  3. Bond, L.J., et al., Improved assessment of mass concrete dams using acoustic travel time tomography. Part I — theory, Constr. & Build. Mater., 2000a, vol. 14, pp. 133–146.

    Article  Google Scholar 

  4. Bond, L.J., et al., Improved assessment of mass concrete dams using acoustic travel time tomography. Part II — applications, Constr. & Build. Mater., 2000a, vol. 14, pp. 147–156.

    Article  Google Scholar 

  5. Bose, S.K. and Mal, A.K., Elastic waves in a fiber-reinforced composite, J. Mech. & Phys. Solids, 1974, vol. 22, pp. 217–229.

    Article  Google Scholar 

  6. Brigante, M. and Pasquino, M., Un metodo indiretto per la stima delta resistenza del calcestruzzo sotto carico, Conv. Intern. Crolle e Affiabilita’ delle Strcuture Civili, Univ. di Napoli: Napoli, 2003.

    Google Scholar 

  7. Bungey, J.H., NDT — the current scene, NDT & E, 1990, vol. 5, pp. 277–300.

    Google Scholar 

  8. Carino, N.J., NDT of concrete: history and challenger, ACI Special Symp., San-Franzisco, 1994.

    Google Scholar 

  9. Carino, N.J. and Sansalone, M., Detecting voids in metal tendon ducts using the impact-echo method, Mater. J. Amer. Concrete Inst., 1992, vol. 89, pp. 296–303.

    Google Scholar 

  10. Carleton, H.R. and Muratore, J.F., Ultrasonic evaluation of concrete, Proc. of the 1986 IEEE Ultrasonic Symposium, 1986, pp. 6017–1020.

    Google Scholar 

  11. Chu, W.C. and Rokhlin, S.I., Determination of macro- and micromechanical and interfacial elastic properties of composites from ultrasonic data, J. Acoust. Soc. Amer., 1992, vol. 92, pp. 920–931.

    Article  Google Scholar 

  12. Datta, S.K., et al., Calculated elastic constants of composites containing anisotropic fibers, Intern. J. Solids & Struct., 1984, vol. 21, pp. 429–443.

    Article  Google Scholar 

  13. Doctor, S.R., et al., SAFT — the evolution of a signal processing technology for ultrasonic testing, NDT & E Intern., 1986, vol. 19, pp. 163–167.

    Article  Google Scholar 

  14. Dzenis, V.V., Ultrasonic control of hardening concrete, Stroyizdar: Leningrad (Russian), 1971.

    Google Scholar 

  15. Dzenis, V.V., Acoustic methods of control in technology of civil engineering constructions, Stroyizdat: Leningrad (Russian), 1978.

    Google Scholar 

  16. Garnier, V., et al., Setting time of roller compacted concrete by spectral analysis of transmitted ultrasonic signals, NDT & E Intern., 1995, vol. 28, pp. 15–22.

    Article  CAS  Google Scholar 

  17. Gaydecki, P., et al., Propagation and attenuation of medium-frequency ultrasonic waves in concrete. A signal analytical approach, measur., Science & Techn., 1992, vol. 3, pp. 126–134.

    Google Scholar 

  18. Gaydecki, P.A. and Brudekin, F.M., Nondestructive testing of reinforced and prestressed concrete structures, NDT & E, 1998, vol. 14, pp. 339–392.

    Google Scholar 

  19. Grosse, C., et al., Localization and classification of fracture types in concrete with quantitative acoustic emission measurement techniques, NDT & E Intern., 1997, vol. 30, pp. 223–230.

    Article  Google Scholar 

  20. Hillger, W., Inspection of concrete by ultrasonic pulse-echo-technique, Proc. 6th Europ. Conf. on NDT, Nice, 1994, vol. 1, p. 159–1163.

    Google Scholar 

  21. Ito, Y. and Uomoto, T., Nondestructive testing method of concrete using impact acoustics, NDT & E Intern., 1997, vol. 30, pp. 217–222.

    Article  Google Scholar 

  22. Jenkins, R.S., Nondestructive testing: an evaluation tool, Concrete Intern.: Design and Construction, 1985, vol. 7, pp. 22–26.

    Google Scholar 

  23. Jones, R., A review of the NDT of concrete, Proc. ICE Symp. on NDT of Concrete and Timber, Inst. Civil Eng.: London, 1970, pp. 1–8.

    Google Scholar 

  24. Kalinski, M.E., Nondestructive characterization of damaged and repaired areas of a concrete beam using the SASW method, Innovations in NDT of Concrete. ACI SP-168, American Concrete Institute: Farmington Hills, MI, 1997, pp. 111–136.

    Google Scholar 

  25. Keiller, A.P., Assessing the strength of the in situ concrete, Concrete Intern.: Design Construct., 1985, vol. 7, pp. 15–21.

    Google Scholar 

  26. Koehler, B., et al., A novel technique for advanced ultrasonic testing of concrete by using signal conditioning methods and a scanning laser vibrometer, Proc. of British Inst. of NDT Intern. Conf: NDT in Civil Engin., Bungey, British Inst. of NDT: Northampton. UK, 1997, pp. 123–134.

    Google Scholar 

  27. Komlosh, K., et al., Comparison of five standards on ultrasonic pulse velocity testing of concrete, Cement. Concrete & Aggregates, 1996, vol. 18, pp. 42–48.

    Article  Google Scholar 

  28. Kozlov, V.N., et al., Thickness measurements and flaw detection in concrete using ultrasonic echo method, NDT & E, 1997, vol. 13, pp. 73–84.

    CAS  Google Scholar 

  29. Kraus, H.G., Generalized synthetic aperture focusing transducer, pulse-echo, ultrasonic scan data processing for non-destructive inspection, Ultrasonics, 1983, vol. 21, pp. 11–18.

    Article  Google Scholar 

  30. Krause, M., et al., Advanced pulse echo method for ultrasoniuc testing of concrete, Bungey, J.H., Ed., NDT in Civil Engin., Brit. Inst of NDT: Northhampton, 1993, pp. 821–827.

    Google Scholar 

  31. Krause, M., et al., Comparison of pulse echo-methods for concrete, Proc. Intern. Symp. on NDT in Civil Engin. (NDT-CE), DGZfP: Berlin, 1995.

    Google Scholar 

  32. Krause, M., et al., Thickness measurement of concrete elements using radar and ultrasonic impulse echo techniques, Forde, M.C., Ed., Proc. 6th Intern. Conf. on Struc. Faults & Repair, Engineering Techniques Press: Edinburgh, 1995, pp. 17–24.

    Google Scholar 

  33. Krause, M., Comparison of pulse-echo methods for testing concrete, NDT & E Intern., 1997, vol. 30, pp. 195–204.

    Article  Google Scholar 

  34. Krause, M., et al., Ultrasonic imaging of concrete members using an array system, Insight, 2000, vol. 42, pp. 447–450.

    Google Scholar 

  35. Krautkramer, J., Ultrasonic Testing of Materials, Springer-Verlag: Berlin, 1990.

    Book  Google Scholar 

  36. Lange, Yu.V., et al., Non-destructive testing of multiplayer structures and concrete, Insight, 1998, vol. 40, pp. 400–403.

    CAS  Google Scholar 

  37. Lin, J.M. and Sansalone, M., The transverse elastic impact response of thick hollow cylinders, J. NDE, 1993, vol. 12, pp. 139–149.

    Google Scholar 

  38. Lin, Y. and Su, W.C., The use of stress waves for determining the depth of surface-opening cracks in concrete structures, Mater. Journ. Amer. Concrete Inst., 1996, vol. 93, no. 5.

    Google Scholar 

  39. Malhotra, V.M. and Carette, G.G., In-situ testing: a review, progr. in concrete techn., Malhotra, V.M., Ed., Energy, Mines, and Resources, Ottawa, 1980, pp. 749–796.

    Google Scholar 

  40. Malholtra, M. and Carino, J.N., (ed.), Handbook on Nondestructive Testing of Concrete, CRC Press: New York, 1991.

    Google Scholar 

  41. Mindess, D. and Young, J.F., Concrete, Prentice-Hall: Englewood Cliffs, N.J., 1981, pp. 440–449.

    Google Scholar 

  42. Moshfeghi, M., Side-lobe suppression for ultrasonic imaging arrays, Ultrasonics, 1987, vol. 25, pp. 322–327.

    Article  Google Scholar 

  43. Nazarian, S. and Desai, M.R., Automated surface wave method: Field testing, Journ. Geotech. Eng., 1992, vol. 119, pp. 1094–1111.

    Article  Google Scholar 

  44. Neville, A.M., Properties of Concrete, 3-rd ed., London: Longman, 1986.

    Google Scholar 

  45. Ohdaira, E. and Masuzawa, N., Water content and its effect on ultrasound propagation in concrete — the possibility of NDE, Ultrasonics, 2000, p. 38.

    Google Scholar 

  46. Popovics, J.S., et al., Approaches for the generation of stress waves in concrete, Experimental Mechanics, 1995, vol. 35, pp. 36–41.

    Article  Google Scholar 

  47. Popovics, J.S., Comments on “determination of elastic contents of a concrete specimen using transient elastic waves,” J. Acoust. Soc. Amer., 1996, vol. 100, pp. 3451–3453.

    Article  Google Scholar 

  48. Popovics, J.S. and Rose, J.L., An approach for wave velocity measurement in solid cylindrical rods subjected to elastic impact, Intern. J. Solids & Struct., 1996, vol. 33, pp. 3925–3935.

    Article  Google Scholar 

  49. Popovics, J.S., et al., A study of surface wave attenuation measurement for applications to pavement characterization, Struct. Mater. Technology III: NDT Conf., Medlock, R.D. and Laffey, D.C., Eds., Proc. of SPIE, 1998, pp. 300–308.

    Chapter  Google Scholar 

  50. Popovicds, J.S., et al., Vibration resonances in finite length concrete cylinders, Topics on NDEs, vol. 2, Reis, H.D. and Djordjevic, B., Eds., Columbus, OH: ASNT, 1998, pp. 97–110.

    Google Scholar 

  51. Popovics, S. and Popovics, J.S., Potential ultrasonic techniques based on surface waves and attenuation for damage evaluation in concrete, a review, Diagn. of Concrete Struct., Proc. Intern. RILEM-IMEKO Conf., Javor., T., Ed., Bratislava: Experteentrum, 1991, pp. 101–104.

    Google Scholar 

  52. Popovics, S., et al., Comparison of DIN/ISO 8047 to several standards on determination of ultrasonic pulse velocity in concrete, Intern. Symp. NDT in Civil Engin. (NDT-CE), Berlin, 1995, pp. 281–296.

    Google Scholar 

  53. Popovics, S. and Popovics, J.S., A critique of the ultrasonic pulse velocity method for testing concrete, NDT & E Intern, 1997, vol. 30, p. 260.

  54. Popovics, S., Strenght and Related Properties of Concrete: A Quantitative Approach, John Wiley: New York, 1998.

    Google Scholar 

  55. Sansalone, M. and Carino, N.J., Impact-echo: a method for flaw detection in concrete using transient stress waves, NBSIR 86-3452. National Bureau of Standards, Gaithersburg, Maryland, 1986.

    Google Scholar 

  56. Sansalone, M. and Carino, N.J., The transient impact response of thick circular plates, National Bureau of Standards J. of Research, 1987a, pp. 355–367.

    Google Scholar 

  57. Sansalone, M. and Carino, N.J., The transient impact response of plates containing disk-shaped flaws, National Bureau of Standards J. of Research, 1987b, pp. 369–381.

    Google Scholar 

  58. Sansalone, M. and Carino, N.J., Detecting honeycombing, the depth of surface-opening cracks, and ducts using the impact-echo method, Concrete Intern., 1988a, pp. 38–46.

    Google Scholar 

  59. Sansalone, M. and Carino, N.J., Laboratory and field studies of the impact-echo method for flaw detection in concrete, NDT of Concrete, Spec. Publ. of Amer. Concrete Inst., 1988b, pp. 1–20.

    Google Scholar 

  60. Sansalone, M., et al., A new procedure for determining the thickness of concrete high-way pavements using surface wave speed measurements and the impact-echo method, Innovations in NDT, a Special Publication of the American Concrete Institute, 1996.

    Google Scholar 

  61. Schickert, M., Towards SAFT-imaging in ultrasonic inspection of concrete, Intern. Symp. on NDT in Civil Engin. (NDT-CE), 1995, pp. 411–418.

    Google Scholar 

  62. Selleck, S.F., et al., Ultrasonic investigation of concrete with distributed damage, ACI Materials J., ISSN 0889-325X, 1998, vol. 95, no. 1, pp. 27–36.

    CAS  Google Scholar 

  63. Shah, A.A., et al., Nondestructive evaluation of damaged concrete using nonlinear ultrasonics, Matetirals and Design, 2009, vol. 30, pp. 775–782.

    Article  CAS  Google Scholar 

  64. Surendra, P.Sh., et al., Use of nondestructive ultrasonic techniques for material assessment and in-service monitoring of concrete structures, NDTnet, 2000, vol. 5, no. 02.

    Google Scholar 

  65. Swamy, R.N., et al., Assessment of in situ concrete strength by various non-destructive tests, NDT & E Intern, 1984, vol. 17, pp. 139–146.

    Article  Google Scholar 

  66. Thomson, R.N., A portable system for high resolution ultrasonic imaging on site, Brit. J. NDT, 1984, vol. 26, pp. 281–285.

    Google Scholar 

  67. Wiggenhauser, H., Advanced NDT methods for the assessment of concrete structures, Concrete Repair, Rehabilitation and Retrofitting II (eds. Alexander et al.), Taylor & Francis Group. London, ISBN 978-0-415-46850-3, 2009.

    Google Scholar 

  68. Wu, T.-T., et al., Detection of the depth of a surface-breaking crack using transient elastic waves, J. Acoust. Soc. Amer., 1995a, vol. 97, pp. 1678–1686.

    Article  Google Scholar 

  69. Wu, T.-T., et al., Determination of elastic constants of a concrete specimen using transient elastic waves, J. Acoust. Soc. Amer, 1995b, vol. 98, pp. 2142–2148.

    Article  Google Scholar 

  70. Wu, T.-T. and Fang, J.-S., A new method for measuring concrete elastic constants using horizontally polarized conical transducers, J. Acoust. Soc. Amer., 1997, vol. 101, pp. 330–336.

    Article  Google Scholar 

  71. Wu, T.-T. and Liu, P.-L., Advancement of the nondestructive evaluation on concrete using transient elastic waves, Ultrasonics, 1998, vol. 36, pp. 197–204.

    Article  Google Scholar 

  72. Xia, X. and Turnet, C.W., New signal processing techniques in acoustic resonance testing of concrete products, Proc. British Inst. of NDT Inter. Conf.: NDT in Civil Engin., Bungey, 1997, Northampton, UK: British Inst. of NDT, 1997, pp. 553–561.

    Google Scholar 

  73. Zhou, D., Water content diagnostics of concrete using nonlinear acoustics means, 17th World Conf. on Nondestr. Testing, Shanghai, China, 2008.

    Google Scholar 

  74. Zhu, J. and Popovics, J.S., Non-contact NDT of concrete structures using air coupled sensors, NSEL Report Series, Report no. NSEL-010, 2008, Dpt. Civil & Environm. Eng. Univ. Illinois, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brigante.

Additional information

Original Russian Text © M. Brigante, M.A. Sumbatyan, 2013, published in Defektoskopiya, 2013, Vol. 49, No. 2, pp. 52–67.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brigante, M., Sumbatyan, M.A. Acoustic methods for the nondestructive testing of concrete: A review of foreign publications in the experimental field. Russ J Nondestruct Test 49, 100–111 (2013). https://doi.org/10.1134/S1061830913020034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830913020034

Keywords