Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Vertical structure of the outer accretion disk in persistent low-mass X-ray binaries

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have investigated the influence of X-ray irradiation on the vertical structure of the outer accretion disk in low-mass X-ray binaries by performing a self-consistent calculation of the vertical structure and X-ray radiation transfer in the disk. Penetrating deep into the disk, the field of scattered X-ray photons with energy E ≳ 10 keV exerts a significant influence on the vertical structure of the accretion disk at a distance R ≳ 1010 cm from the neutron star. At a distance R ∼ 1011 cm, where the total surface density in the disk reaches Σ0 ∼ 20 g cm−2, X-ray heating affects all layers of an optically thick disk. The X-ray heating effect is enhanced significantly in the presence of an extended atmospheric layer with a temperature T atm ≈ (2–3) × 106 K above the accretion disk. We have derived simple analytic formulas for the disk heating by scattered X-ray photons using an approximate solution of the transfer equation by the Sobolev method. This approximation has a ≲10% accuracy in the range of X-ray photon energies E < 20 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Allen, Astrophysical Quantities (Athlone Press, Univ. London, 1973).

    Google Scholar 

  2. N. R. Badnell, M. A. Bautista, K. Butler, et al., Mon. Not. R. Astron. Soc. 360, 458 (2005).

    Article  ADS  Google Scholar 

  3. P. B. Bosma and W. A. Rooij, Astron. Astrophys. 126, 283 (1983).

    ADS  Google Scholar 

  4. S. Chandrasekhar, Radiative Transfer (Clarendon, Oxford, 1950).

    MATH  Google Scholar 

  5. G. Dubus, J.-P. Lasota, J.-M. Hameury, and P. Charles, Mon. Not. R. Astron. Soc. 303, 139 (1999).

    Article  ADS  Google Scholar 

  6. A. A. Esin, E. Kuulkers, J. E. McClintock, and R. Narayan, Astrophys. J. 532, 1069 (2000).

    Article  ADS  Google Scholar 

  7. M. Gilfanov and V. Arefyev, astro-ph/0501215 (2005).

  8. M. A. Jimenez-Garate, J. C. Raymond, and D. A. Liedahl, Astrophys. J. 581, 1297 (2002).

    Article  ADS  Google Scholar 

  9. J. de Jong, J. van Paradijs, and T. Augusteijn, Astron. Astrophys. 314, 484 (1996).

    ADS  Google Scholar 

  10. Y.-K. Ko and T. R. Kallman, Astrophys. J. 431, 273 (1994).

    Article  ADS  Google Scholar 

  11. Q. Z. Liu, J. van Paradijs, and E. P. J. van den Heuvel, Astron. Astrophys. 368, 1021 (2001).

    Article  ADS  Google Scholar 

  12. V.M. Lyutyi and R. A. Sunyaev, Sov. Astron. 20, 290 (1976).

    ADS  Google Scholar 

  13. F. Meyer and E. Meyer-Hofmeister, Astron. Astrophys. 106, 34 (1982).

    ADS  Google Scholar 

  14. R. Morrison and D. McCammon, Astrophys. J. 270, 119 (1983).

    Article  ADS  Google Scholar 

  15. D. I. Nagirner, Lectures on the Theory of Radiative Transfer (SPb. Univ., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  16. L. A. Pozdnyakov, I. M. Sobol, and R. A. Syunyaev, Astrophys. Space Phys. Rev. 2, 189 (1983).

    ADS  Google Scholar 

  17. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN. The Art of Scientific Computing (Cambridge Univ., Cambridge, 1992).

    MATH  Google Scholar 

  18. D. Psaltis, Astrophys. J. 574, 306 (2002).

    Article  ADS  Google Scholar 

  19. J. C. Raymond, Astrophys. J. 412, 267 (1993).

    Article  ADS  Google Scholar 

  20. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  21. V. V. Sobolev, Radiative Energy Transfer in Stellar and Planetary Atmospheres (GITTL, Moscow, 1956) [in Russian].

    Google Scholar 

  22. V. V. Sobolev, Sov. Astron. 12, 420 (1968).

    ADS  Google Scholar 

  23. V. Suleimanov, F. Meyer, and E. Meyer-Hofmeister, Astron. Astrophys. 350, 63 (1999).

    ADS  Google Scholar 

  24. V. Suleimanov, F. Meyer, and E. Meyer-Hofmeister, Astron. Astrophys. 401, 1009 (2003).

    Article  ADS  Google Scholar 

  25. V. F. Suleimanov, G. V. Lipunova, and N. I. Shakura, Astron. Rep. 51, 549 (2007).

    Article  ADS  Google Scholar 

  26. V. F. Suleimanov, G. V. Lipunova, and N. I. Shakura, Astron. Astrophys. 491, 267 (2008).

    Article  ADS  Google Scholar 

  27. Y. Tuchman, S. Mineshige, and J. C. Wheeler, Astrophys. J. 359, 164 (1990).

    Article  ADS  Google Scholar 

  28. S. D. Vrtilek, J. C. Raymond, M. R. Garcia, et al., Astron. Astrophys. 235, 162 (1990).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mescheryakov.

Additional information

Original Russian Text © A.V. Mescheryakov, N.I. Shakura, V.F. Suleimanov, 2011, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2011, Vol. 37, No. 5, pp. 343–364.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mescheryakov, A.V., Shakura, N.I. & Suleimanov, V.F. Vertical structure of the outer accretion disk in persistent low-mass X-ray binaries. Astron. Lett. 37, 311–331 (2011). https://doi.org/10.1134/S1063773711050045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773711050045

Keywords