Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

The First Light Curve Solutions and Period Study of BQ Ari

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The first analysis of the photometric observation in BVR filters of a W UMa type binary system BQ Ari was performed. Light curve analysis was performed using Wilson–Devinney (W–D) code combined with a Monte Carlo (MC) simulation to determine its photometric and geometric elements and their uncertainties. These results show that BQ Ari is a contact binary system with a photometric mass ratio \(q=0.548\pm 0.019\), a fillout factor \(f=24\pm 0.8\%\), and an orbital inclination of \(i=85.09\pm 0.45\). We used the parallax from Gaia EDR3 for calculating the absolute parameters of the binary system. This study suggested a new linear ephemeris for BQ Ari, combining our new mid-eclipse times and the previous observations, which we analyzed using the Monte Carlo Markov Chain (MCMC) method. We present the first analysis of the system’s orbital period behavior by analyzing the \(O-C\) diagram using the Genetic Algorithm (GA) and the MCMC approaches in OCFit code. We attempted to explain the analysis of the residuals of linear fit in the \(O-C\) diagram with two approaches; ‘‘LiTE \(+\) Quadratic’’ and ‘‘Magnetic activity \(+\) Quadratic.’’ Although we consider the magnetic activity to be probable, the system should be studied further in order to reveal the nature of orbital period variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://simbad.u-strasbg.fr/simbad/.

  2. https://www.cosmos.esa.int/web/gaia/dr2.

REFERENCES

  1. J. H. Applegate, Astrophys. J. 385, 621 (1992).

    Article  ADS  Google Scholar 

  2. K. A. Collins, J. F. Kielkopf, K. G. Stassun, and F. V. Hessman, Astron. J. 153(2), 77 (2017).

    Article  ADS  Google Scholar 

  3. Z. Eker, F. Soydugan, S. Bilir, V. Bakış, F. Aliçavuş, S. Özer, G. Aslan, M. Alpsoy, et al., Mon. Not. R. Astron. Soc. 496 (3), 3887 (2020).

  4. P. Gajdoš, and S., Parimucha, OEJV. 197, 71 (2019).

  5. J. Hübscher, IBVS. 6118, 1 (2014).

    ADS  Google Scholar 

  6. J. Hübscher, IBVS. 6196, 1 (2017).

    ADS  Google Scholar 

  7. J. Hübscher, and P.B. Lehmann, IBVS. 6026, 1 (2012).

    ADS  Google Scholar 

  8. E. Høg, C. Fabricius, V. V. Makarov, U. Bastian, P. Schwekendiek, A. Wicenec, S. Urban, T. Corbin, et al., Astron. Astrophys. 357, 367 (2000).

    ADS  Google Scholar 

  9. J.B. Irwin, Astrophys. J. 116, 211 (1952).

    Article  ADS  Google Scholar 

  10. Z. Kopal, Close Binary Systems, 1959cbs. book. (1959).

  11. K. Kwee, and H. Van Woerden, Bull. Astron. Inst. Netherlands. 12, 327 (1956).

    ADS  Google Scholar 

  12. M. C. A. Li, N. J. Rattenbury, I. A. Bond, T. Sumi, D. P. Bennett, N. Koshimoto, F. Abe, Y. Asakura, et al., Mon. Not. R. Astron. Soc. 480(4), 4557 (2018).

    Article  ADS  Google Scholar 

  13. L. B. Lucy, Z. Phys. 65, 89 (1967).

    Google Scholar 

  14. Z. Mikulášek, M. Chrastina, M. Zejda, J. Janík, L. Yhu, and S. Qian, Contrib. Astron. Obs. Skalnaté Pleso. 43, 382 (2014).

    ADS  Google Scholar 

  15. K. Nagai, VSOLJ Variable Star Bull. 61 (2016).

  16. A. A. Neath and J. E. Cavanaugh, WIREs Comput Stat. 4(2), 199 (2012).

    Article  Google Scholar 

  17. D. J. K. O’Connell, Mon. Not. R. Astron. Soc. 111(6), 642 (1951).

    Article  ADS  Google Scholar 

  18. I. Ozavci, E. Bahar, D. D. Izci, D. Ozuyar, O. Karadeniz, B. Sayar, S. Torun, M. Üzümcü, et al., OEJV, 1 (2019).

  19. L. Pagel, IBVS. 6244, 1 (2018).

    ADS  Google Scholar 

  20. L. Pagel, BAV. 31 (2019).

  21. A. Paschke, OEJV. 142 (2011).

  22. A. Paschke, OEJV. 181 (2017).

  23. Q. F. Pi, L. Y. Zhang, S. L. Bi, X. L. Han, D. M. Wang and H. P. Lu, Astron. J. 154(6), 260 (2017).

    Article  ADS  Google Scholar 

  24. T. Pribulla, M. Vaňko, M. Ammlervon Eiff, M. Andreev, A. Aslantürk, N. Awadalla, D. Baluďansky, A. Bonanno, et al., Astron. Nachr. 333(8), 754 (2012).

    Article  ADS  Google Scholar 

  25. J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, PeerJ Comput. Sci. 2, 55 (2016).

    Article  Google Scholar 

  26. E. F. Schlafly and D. P. Finkbeiner, Astrophys. J. 737(2), 103 (2011).

    Article  ADS  Google Scholar 

  27. V. Školník, B.R.N.O. (2017). http://var2.astro.cz/EN/brno/index.php.

  28. K. Sriram, S. Malu, C. S. Choi and P. V. Rao, Astron. J. 153(5), 231 (2017).

    Article  ADS  Google Scholar 

  29. S. M. Rucinski, Acta Astron. 19, 245 (1969).

    ADS  Google Scholar 

  30. W. Van Hamme, Astron. J. 106, 2096 (1993).

    Article  ADS  Google Scholar 

  31. R. E. Wilson and E. J. Devinney, Astrophys. J. 166, 605 (1971).

    Article  ADS  Google Scholar 

  32. P. Zasche, R. Uhlar, H. Kucakova, P. Svoboda, and M. Masek, IBVS 6114, 1 (2014).

    ADS  Google Scholar 

  33. S. Zola, K. Gazeas, J. M. Kreiner, W. Ogloza, M. Siwak, D. Koziel-Wierzbowska, and M. Winiarski, Mon. Not. R. Astron. Soc. 408(1), 464 (2010).

    Article  ADS  Google Scholar 

  34. S. Zola, S. M. Rucinski, A. Baran, W. Ogloza, W. Pych, J. M. Kreiner, G. Stachowski, K. Gazeas, P. Niarchos, and M. Siwak, Acta Astron. 54, 299 (2004).

    ADS  Google Scholar 

Download references

AVAILABILITY

The Python codes used in this study will be available at:https://github.com/Somayeh91/BQ_Ari_analysis/

The data underlying this article will be shared at reasonable request to the corresponding author.

ACKNOWLEDGMENTS

This manuscript was prepared by cooperation between the International Occultation Timing Association Middle East section (IOTA/ME) and Çukurova University of Adana, Adana, Turkey. This group activity occurred during the IOTA/ME 2nd Workshop on Photometric Study of Binary Systems and Exoplanet Transits held at Çukurova University, Adana, Turkey, from February 4–7, 2020. We also give special thanks to Prof. Mehmet Emin Özel for his cooperation in this workshop. OB thanks TÜBİTAK for their support with project 118F042 that made his participation possible. We thank TÜBİTAK National Observatory for its support in providing the CCD to UZAYMER. Also, great thanks to Paul D. Maley for making some corrections in the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Poro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poro, A., Davoudi, F., Alicavus, F. et al. The First Light Curve Solutions and Period Study of BQ Ari. Astron. Lett. 47, 402–410 (2021). https://doi.org/10.1134/S1063773721060050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773721060050

Keywords: