Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Correlation effects during liquid infiltration into hydrophobic nanoporous media

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

To explain the thermal effects observed during the infiltration of a nonwetting liquid into a disordered nanoporous medium, we have constructed a model that includes correlation effects in a disordered medium. It is based on analytical methods of the percolation theory. The infiltration of a porous medium is considered as the infiltration of pores in an infinite cluster of interconnected pores. Using the model of randomly situated spheres (RSS), we have been able to take into account the correlation effect of the spatial arrangement and connectivity of pores in the medium. The other correlation effect of the mutual arrangement of filled and empty pores on the shell of an infinite percolation cluster of filled pores determines the infiltration fluctuation probability. This probability has been calculated analytically. Allowance for these correlation effects during infiltration and defiltration makes it possible to suggest a physical mechanism of the contact angle hysteresis and to calculate the dependences of the contact angles on the degree of infiltration, porosity of the medium, and temperature. Based on the suggested model, we have managed to describe the temperature dependences of the infiltration and defiltration pressures and the thermal effects that accompany the absorption of energy by disordered porous medium-nonwetting liquid systems with various porosities in a unified way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Bogomolov, Phys. Rev. B: Condens. Matter 51, 17040 (1995).

    Article  ADS  Google Scholar 

  2. V. A. Eroshenko, Ross. Khim. Zh. 46(3), 31 (2002).

    Google Scholar 

  3. A. Y. Fadeev and V. A. Eroshenko, J. Colloid Interface Sci. 187, 275 (1997).

    Article  Google Scholar 

  4. V. D. Borman, A. M. Grekhov, and V. I. Troyan, Zh. Eksp. Teor. Fiz. 118(1), 193 (2000) [JETP 91 (1), 170 (2000)].

    Google Scholar 

  5. V. D. Borman, A. A. Belogorlov, A. M. Grekhov, G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, Zh. Eksp. Teor. Fiz. 127(2), 431 (2005) [JETP 100 (2), 385 (2005)].

    Google Scholar 

  6. B. Lefevre, A. Saugey, J. L. Barrat, L. Bocquet, E. Charlaix, P. F. Gobin, and G. Vigier, Colloids Surf., A 241, 265 (2004).

    Article  Google Scholar 

  7. B. Lefevre, A. Saugey, J. L. Barrat, L. Bocquet, E. Charlaix, P. F. Gobin, and G. Vigier, J. Chem. Phys. 120, 4927 (2004).

    Article  ADS  Google Scholar 

  8. T. Iwatsubo, C. V. Suciu, M. Ikenagao, and K. Yaguchio, J. Sound Vib. 308, 579 (2007).

    Article  ADS  Google Scholar 

  9. X. Chen, F. B. Surani, X. Kong, V. K. Punyamurtula, and Y. Qiao, Appl. Phys. Lett. 89, 241918 (2006).

    Article  ADS  Google Scholar 

  10. Y. Qiao, V. K. Punyamurtula, A. Han, X. Kong, and F. B. Surani, Appl. Phys. Lett. 89, 251905 (2006).

    Article  ADS  Google Scholar 

  11. A. Han and Y. Qiao, Appl. Phys. Lett. 91, 173123 (2007).

    Article  ADS  Google Scholar 

  12. A. Han and Y. Qiao, Chem. Phys. Lett. 454, 294 (2008).

    Article  ADS  Google Scholar 

  13. V. A. Eroshenko, I. Piatiletov, L. Coiffard, and V. Stoudenets, Proc. Inst. Mech. Eng., Part D 221, 301 (2007); Proc. Inst. Mech. Eng., Part D 222, 285 (2007).

    Article  Google Scholar 

  14. I. Sebastian and I. Halasz, Chromotographia 7, 371 (1974).

    Article  Google Scholar 

  15. K. K. Unger, Porous Silica: Its Properties and Use as Support in Column Liquid Chromatography (Elsevier, Amsterdam, The Netherlands, 1979).

    Google Scholar 

  16. L. Bokasanyi, O. Liardon, and E. Kovats, Adv. Colloid Interface Sci. 6, 95 (1976).

    Article  Google Scholar 

  17. G. V. Lisichkin and A. Yu. Fadeev, Ross. Khim. Zh. 40(3), 65 (1996).

    Google Scholar 

  18. A. Y. Fadeev and V. A. Eroshenko, Zh. Fiz. Khim. 70, 1482 (1996).

    Google Scholar 

  19. A. Y. Fadeev and V. A. Eroshenko, Colloid J. 57, 480 (1995).

    Google Scholar 

  20. C. V. Suciu, T. Iwatsubo, and S. Deki, J. Colloid Interface Sci. 259, 62 (2003).

    Article  Google Scholar 

  21. C. V. Suciu, T. I. Iwatsubo, K. Yaguchi, and M. Ikenaga, J. Colloid Interface Sci. 283, 196 (2005).

    Article  Google Scholar 

  22. L. Coiffard and V. Eroshenko, J. Colloid Interface Sci. 300, 304 (2006).

    Article  Google Scholar 

  23. R. Denoyel, I. Beurroies, and B. Lefevre, J. Pet. Sci. Eng. 45, 203 (2004).

    Article  Google Scholar 

  24. A. Han, X. Kong, and Y. Qiao, J. Appl. Phys. 100, 014308 (2006).

    Article  ADS  Google Scholar 

  25. X. Kong and Y. Qiao, Philos. Mag. Lett. 85(7), 331 (2005).

    Article  ADS  Google Scholar 

  26. Y. Qiao, G. Cao, and X. Chen, J. Am. Chem. Soc. 129, 2355 (2007).

    Article  Google Scholar 

  27. X. Kong, F. B. Surani, and Y. Qiao, J. Mater. Res. 20, 1042 (2005).

    Article  ADS  Google Scholar 

  28. X. Kong and Y. Qiao, Appl. Phys. Lett. 86, 151919 (2005).

    Article  ADS  Google Scholar 

  29. F. Surani and Y. Qiao, J. Appl. Phys. 100, 034311 (2006).

    Article  ADS  Google Scholar 

  30. F. B. Surani, X. Kong, and Y. Qiao, Appl. Phys. Lett. 87, 251906 (2005).

    Article  ADS  Google Scholar 

  31. F. B. Surani, A. Han, and Y. Qiao, Appl. Phys. Lett. 89, 093108 (2006).

    Article  ADS  Google Scholar 

  32. A. Han, W. Lu, V. K. Punyamurtula, T. Kim, and Y. Qiao, J. Appl. Phys. 105, 024309 (2009).

    Article  ADS  Google Scholar 

  33. T. Kim, A. Han, and Y. Qiao, J. Appl. Phys. 104, 034304 (2008).

    Article  ADS  Google Scholar 

  34. A. Han, V. K. Punyamurtula, and Y. Qiao, Appl. Phys. Lett. 92, 153117 (2008).

    Article  ADS  Google Scholar 

  35. V. Eroshenko, R.-C. Regis, M. Soulard, and J. Patarin, J. Am. Chem. Soc. 123, 8129 (2001).

    Article  Google Scholar 

  36. V. Eroshenko, R. C. Regis, M. Soulard, and J. Patarin, C. R. Phys. 3, 111 (2002).

    Article  ADS  Google Scholar 

  37. A. Han, W. Lu, T. Kim, X. Chen, and Y. Qiao, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 78, 031 408 (2008).

    Article  Google Scholar 

  38. W. Lu, A. Han, T. Kim, V. K. Punyamurtula, X. Chen, and Y. Qiao, Appl. Phys. Lett. 94, 023 106 (2009).

    Google Scholar 

  39. Y. Qiao, L. Liu, and X. Chen, Nano Lett. 9, 984 (2009).

    Article  ADS  Google Scholar 

  40. L. Liu, X. Chen, W. Lu, A. Han, and Y. Qiao, Phys. Rev. Lett. 102, 184501 (2009).

    Article  ADS  Google Scholar 

  41. T. Kim, W. Lu, A. Han, V. K. Punyamurtula, X. Chen, and Y. Qiao, Appl. Phys. Lett. 94, 013105 (2009).

    Article  ADS  Google Scholar 

  42. X. Chen, G. Cao, A. Han, V. K. Punyamurtula, L. Liu, P. J. Culligan, T. Kim, and Y. Qiao, Nano Lett. 8, 2988 (2008).

    Article  ADS  Google Scholar 

  43. L. Liu, Y. Qiao, and X. Chen, Appl. Phys. Lett. 92, 101927 (2008).

    Article  ADS  Google Scholar 

  44. Y. Qiao, V. K. Punyamurtula, G. Xian, V. M. Karbhari, and A. Han, Appl. Phys. Lett. 92, 063109 (2008).

    Article  ADS  Google Scholar 

  45. A. Han, V. K. Punyamurtula, W. Lu, and Y. Qiao, Appl. Phys. Lett. 103, 084318 (2008).

    Google Scholar 

  46. A. Han, W. Lu, V. K. Punyamutula, X. Chen, F. B. Surani, T. Kim, and Y. Qiao, J. Appl. Phys. 104, 124908 (2008).

    Article  ADS  Google Scholar 

  47. F. Gomez, R. Denoyel, and J. Rouquerol, Langmuir 16, 4374 (2000).

    Article  Google Scholar 

  48. V. Yu. Gusev, Langmuir 10, 235 (1994).

    Article  Google Scholar 

  49. F. B. Surani, X. Kong, D. B. Panchal, and Y. Qiao, Appl. Phys. Lett. 87, 163111 (2005).

    Article  ADS  Google Scholar 

  50. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics: Part 1 (Nauka, Moscow, 1976; Butterworth-Heinemann, Oxford, 1980).

    Google Scholar 

  51. J. M. Howe, Interfaces in Materials (John Wiley and Sons, New York, United States, 1997).

    Google Scholar 

  52. V. D. Borman, A. A. Belogorlov, G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, Zh. Eksp. Teor. Fiz. 135(3), 446 (2009) [JETP 108 (3), 389 (2009)].

    Google Scholar 

  53. Y. Qiao and X. Kong, Phys. Scr. 71, 27 (2005).

    Article  MATH  ADS  Google Scholar 

  54. M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  55. L. I. Kheifets and A. V. Neimark, Multiphase Processes in Porous Media (Khimiya, Moscow, 1982) [in Russian].

    Google Scholar 

  56. F. Porcheron and P. A. Monson, Langmuir 21, 3179 (2005).

    Article  Google Scholar 

  57. H.-J. Woo and P. A. Monson, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 041207 (2003).

    Article  ADS  Google Scholar 

  58. E. Kierlik, P. A. Monson, M. L. Rosinberg, L. Sarkisov, and G. Tarjus, Phys. Rev. Lett. 87, 055701 (2001).

    Article  ADS  Google Scholar 

  59. F. Porcheron and M. Thommes, Langmuir 23, 3372 (2007).

    Article  Google Scholar 

  60. M. Sashimi, Rev. Mod. Phys. 65, 1393 (1993).

    Article  ADS  Google Scholar 

  61. P. S. Grinchuk and O. S. Rabinovich, Zh. Eksp. Teor. Fiz. 123(2), 341 (2003) [JETP 96 (2), 301 (2003)].

    Google Scholar 

  62. A. A. Abrikosov, Pis’ma Zh. Eksp. Teor. Fiz. 29(1), 72 (1979) [JETP Lett. 29 (1), 65 (1979)].

    Google Scholar 

  63. M. I. Ozhovan, Zh. Eksp. Teor. Fiz. 104(6), 4021 (1993) [JETP 77 (6), 939 (1993)].

    Google Scholar 

  64. Yu. Yu. Tarasevich, Percolation Theory, Applications, and Algorithms (Editorial URSS, Moscow, 2002) [in Russian].

    Google Scholar 

  65. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, Berlin, 1984).

    Google Scholar 

  66. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).

    Google Scholar 

  67. V. Yu. Gusev and A. A. Fomkin, J. Colloid Interface Sci. 21, 4567 (1994).

    Google Scholar 

  68. S. P. Rigby and K. J. Edler, J. Colloid Interface Sci. 250, 175 (2002).

    Article  Google Scholar 

  69. F. Porcheron, M. Thommes, and R. Ahmad, Langmuir 23, 3372 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Borman.

Additional information

Original Russian Text © V.D. Borman, A.A. Belogorlov, V.A. Byrkin, G.V. Lisichkin, V.N. Tronin, V.I. Troyan, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 139, No. 3, pp. 446–463.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borman, V.D., Belogorlov, A.A., Byrkin, V.A. et al. Correlation effects during liquid infiltration into hydrophobic nanoporous media. J. Exp. Theor. Phys. 112, 385–400 (2011). https://doi.org/10.1134/S1063776111010055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111010055

Keywords