Abstract
To explain the thermal effects observed during the infiltration of a nonwetting liquid into a disordered nanoporous medium, we have constructed a model that includes correlation effects in a disordered medium. It is based on analytical methods of the percolation theory. The infiltration of a porous medium is considered as the infiltration of pores in an infinite cluster of interconnected pores. Using the model of randomly situated spheres (RSS), we have been able to take into account the correlation effect of the spatial arrangement and connectivity of pores in the medium. The other correlation effect of the mutual arrangement of filled and empty pores on the shell of an infinite percolation cluster of filled pores determines the infiltration fluctuation probability. This probability has been calculated analytically. Allowance for these correlation effects during infiltration and defiltration makes it possible to suggest a physical mechanism of the contact angle hysteresis and to calculate the dependences of the contact angles on the degree of infiltration, porosity of the medium, and temperature. Based on the suggested model, we have managed to describe the temperature dependences of the infiltration and defiltration pressures and the thermal effects that accompany the absorption of energy by disordered porous medium-nonwetting liquid systems with various porosities in a unified way.
Similar content being viewed by others
References
V. N. Bogomolov, Phys. Rev. B: Condens. Matter 51, 17040 (1995).
V. A. Eroshenko, Ross. Khim. Zh. 46(3), 31 (2002).
A. Y. Fadeev and V. A. Eroshenko, J. Colloid Interface Sci. 187, 275 (1997).
V. D. Borman, A. M. Grekhov, and V. I. Troyan, Zh. Eksp. Teor. Fiz. 118(1), 193 (2000) [JETP 91 (1), 170 (2000)].
V. D. Borman, A. A. Belogorlov, A. M. Grekhov, G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, Zh. Eksp. Teor. Fiz. 127(2), 431 (2005) [JETP 100 (2), 385 (2005)].
B. Lefevre, A. Saugey, J. L. Barrat, L. Bocquet, E. Charlaix, P. F. Gobin, and G. Vigier, Colloids Surf., A 241, 265 (2004).
B. Lefevre, A. Saugey, J. L. Barrat, L. Bocquet, E. Charlaix, P. F. Gobin, and G. Vigier, J. Chem. Phys. 120, 4927 (2004).
T. Iwatsubo, C. V. Suciu, M. Ikenagao, and K. Yaguchio, J. Sound Vib. 308, 579 (2007).
X. Chen, F. B. Surani, X. Kong, V. K. Punyamurtula, and Y. Qiao, Appl. Phys. Lett. 89, 241918 (2006).
Y. Qiao, V. K. Punyamurtula, A. Han, X. Kong, and F. B. Surani, Appl. Phys. Lett. 89, 251905 (2006).
A. Han and Y. Qiao, Appl. Phys. Lett. 91, 173123 (2007).
A. Han and Y. Qiao, Chem. Phys. Lett. 454, 294 (2008).
V. A. Eroshenko, I. Piatiletov, L. Coiffard, and V. Stoudenets, Proc. Inst. Mech. Eng., Part D 221, 301 (2007); Proc. Inst. Mech. Eng., Part D 222, 285 (2007).
I. Sebastian and I. Halasz, Chromotographia 7, 371 (1974).
K. K. Unger, Porous Silica: Its Properties and Use as Support in Column Liquid Chromatography (Elsevier, Amsterdam, The Netherlands, 1979).
L. Bokasanyi, O. Liardon, and E. Kovats, Adv. Colloid Interface Sci. 6, 95 (1976).
G. V. Lisichkin and A. Yu. Fadeev, Ross. Khim. Zh. 40(3), 65 (1996).
A. Y. Fadeev and V. A. Eroshenko, Zh. Fiz. Khim. 70, 1482 (1996).
A. Y. Fadeev and V. A. Eroshenko, Colloid J. 57, 480 (1995).
C. V. Suciu, T. Iwatsubo, and S. Deki, J. Colloid Interface Sci. 259, 62 (2003).
C. V. Suciu, T. I. Iwatsubo, K. Yaguchi, and M. Ikenaga, J. Colloid Interface Sci. 283, 196 (2005).
L. Coiffard and V. Eroshenko, J. Colloid Interface Sci. 300, 304 (2006).
R. Denoyel, I. Beurroies, and B. Lefevre, J. Pet. Sci. Eng. 45, 203 (2004).
A. Han, X. Kong, and Y. Qiao, J. Appl. Phys. 100, 014308 (2006).
X. Kong and Y. Qiao, Philos. Mag. Lett. 85(7), 331 (2005).
Y. Qiao, G. Cao, and X. Chen, J. Am. Chem. Soc. 129, 2355 (2007).
X. Kong, F. B. Surani, and Y. Qiao, J. Mater. Res. 20, 1042 (2005).
X. Kong and Y. Qiao, Appl. Phys. Lett. 86, 151919 (2005).
F. Surani and Y. Qiao, J. Appl. Phys. 100, 034311 (2006).
F. B. Surani, X. Kong, and Y. Qiao, Appl. Phys. Lett. 87, 251906 (2005).
F. B. Surani, A. Han, and Y. Qiao, Appl. Phys. Lett. 89, 093108 (2006).
A. Han, W. Lu, V. K. Punyamurtula, T. Kim, and Y. Qiao, J. Appl. Phys. 105, 024309 (2009).
T. Kim, A. Han, and Y. Qiao, J. Appl. Phys. 104, 034304 (2008).
A. Han, V. K. Punyamurtula, and Y. Qiao, Appl. Phys. Lett. 92, 153117 (2008).
V. Eroshenko, R.-C. Regis, M. Soulard, and J. Patarin, J. Am. Chem. Soc. 123, 8129 (2001).
V. Eroshenko, R. C. Regis, M. Soulard, and J. Patarin, C. R. Phys. 3, 111 (2002).
A. Han, W. Lu, T. Kim, X. Chen, and Y. Qiao, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 78, 031 408 (2008).
W. Lu, A. Han, T. Kim, V. K. Punyamurtula, X. Chen, and Y. Qiao, Appl. Phys. Lett. 94, 023 106 (2009).
Y. Qiao, L. Liu, and X. Chen, Nano Lett. 9, 984 (2009).
L. Liu, X. Chen, W. Lu, A. Han, and Y. Qiao, Phys. Rev. Lett. 102, 184501 (2009).
T. Kim, W. Lu, A. Han, V. K. Punyamurtula, X. Chen, and Y. Qiao, Appl. Phys. Lett. 94, 013105 (2009).
X. Chen, G. Cao, A. Han, V. K. Punyamurtula, L. Liu, P. J. Culligan, T. Kim, and Y. Qiao, Nano Lett. 8, 2988 (2008).
L. Liu, Y. Qiao, and X. Chen, Appl. Phys. Lett. 92, 101927 (2008).
Y. Qiao, V. K. Punyamurtula, G. Xian, V. M. Karbhari, and A. Han, Appl. Phys. Lett. 92, 063109 (2008).
A. Han, V. K. Punyamurtula, W. Lu, and Y. Qiao, Appl. Phys. Lett. 103, 084318 (2008).
A. Han, W. Lu, V. K. Punyamutula, X. Chen, F. B. Surani, T. Kim, and Y. Qiao, J. Appl. Phys. 104, 124908 (2008).
F. Gomez, R. Denoyel, and J. Rouquerol, Langmuir 16, 4374 (2000).
V. Yu. Gusev, Langmuir 10, 235 (1994).
F. B. Surani, X. Kong, D. B. Panchal, and Y. Qiao, Appl. Phys. Lett. 87, 163111 (2005).
L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics: Part 1 (Nauka, Moscow, 1976; Butterworth-Heinemann, Oxford, 1980).
J. M. Howe, Interfaces in Materials (John Wiley and Sons, New York, United States, 1997).
V. D. Borman, A. A. Belogorlov, G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, Zh. Eksp. Teor. Fiz. 135(3), 446 (2009) [JETP 108 (3), 389 (2009)].
Y. Qiao and X. Kong, Phys. Scr. 71, 27 (2005).
M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).
L. I. Kheifets and A. V. Neimark, Multiphase Processes in Porous Media (Khimiya, Moscow, 1982) [in Russian].
F. Porcheron and P. A. Monson, Langmuir 21, 3179 (2005).
H.-J. Woo and P. A. Monson, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 041207 (2003).
E. Kierlik, P. A. Monson, M. L. Rosinberg, L. Sarkisov, and G. Tarjus, Phys. Rev. Lett. 87, 055701 (2001).
F. Porcheron and M. Thommes, Langmuir 23, 3372 (2007).
M. Sashimi, Rev. Mod. Phys. 65, 1393 (1993).
P. S. Grinchuk and O. S. Rabinovich, Zh. Eksp. Teor. Fiz. 123(2), 341 (2003) [JETP 96 (2), 301 (2003)].
A. A. Abrikosov, Pis’ma Zh. Eksp. Teor. Fiz. 29(1), 72 (1979) [JETP Lett. 29 (1), 65 (1979)].
M. I. Ozhovan, Zh. Eksp. Teor. Fiz. 104(6), 4021 (1993) [JETP 77 (6), 939 (1993)].
Yu. Yu. Tarasevich, Percolation Theory, Applications, and Algorithms (Editorial URSS, Moscow, 2002) [in Russian].
B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, Berlin, 1984).
Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).
V. Yu. Gusev and A. A. Fomkin, J. Colloid Interface Sci. 21, 4567 (1994).
S. P. Rigby and K. J. Edler, J. Colloid Interface Sci. 250, 175 (2002).
F. Porcheron, M. Thommes, and R. Ahmad, Langmuir 23, 3372 (2007).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © V.D. Borman, A.A. Belogorlov, V.A. Byrkin, G.V. Lisichkin, V.N. Tronin, V.I. Troyan, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 139, No. 3, pp. 446–463.
Rights and permissions
About this article
Cite this article
Borman, V.D., Belogorlov, A.A., Byrkin, V.A. et al. Correlation effects during liquid infiltration into hydrophobic nanoporous media. J. Exp. Theor. Phys. 112, 385–400 (2011). https://doi.org/10.1134/S1063776111010055
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063776111010055