Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Potential of the neutron Lloyd’s mirror interferometer for the search for new interactions

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2013

Abstract

We discuss the potential of the neutron Lloyd’s mirror interferometer in a search for new interactions at small scales. We consider three hypothetical interactions that may be tested using the interferometer. The chameleon scalar field proposed to solve the enigma of accelerating expansion of the Universe produces interaction between particles and matter. The axion-like spin-dependent coupling between a neutron and nuclei or/and electrons may result in a P- and T-noninvariant interaction with matter. Hypothetical non-Newtonian gravitational interactions mediates an additional short-range potential between neutrons and bulk matter. These interactions between the neutron and the mirror of a Lloyd-type neutron interferometer cause a phase shift of neutron waves. We estimate the sensitivity and systematic effects of possible experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ratra and P. J. E. Peebles, Phys. Rev. D: Part. Fields 37, 3406 (1988).

    Article  ADS  Google Scholar 

  2. P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).

    Article  ADS  Google Scholar 

  3. E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1553 (2006).

    Article  Google Scholar 

  4. J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104 (2004); J. Khoury and A. Weltman, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 69, 044026 (2004).

    Article  ADS  Google Scholar 

  5. P. Brax, C. van de Bruck, A.-C. Davis, J. Khoury, and A. Weltman, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 70, 123518 (2004).

    Article  Google Scholar 

  6. S. S. Gubser and J. Khoury, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 70, 104001 (2004).

    Article  Google Scholar 

  7. A. Upadhye, S. S. Gubser, and J. Khoury, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 74, 104024 (2006).

    Article  Google Scholar 

  8. D. F. Mota and D. S. Shaw, Phys. Rev. Lett. 97, 151102 (2006).

    Article  ADS  Google Scholar 

  9. D. F. Mota and D. S. Shaw, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 75, 063501 (2007).

    Article  Google Scholar 

  10. E. Fischbach and C. L. Talmadge, The Search for NonNewtonian Gravity (Springer-Verlag, New-York, 1998).

    MATH  Google Scholar 

  11. M. Bordag, U. Mohideen, and V. M. Mostepanenko, Phys. Rep. 353, 1 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  12. P. Brax, C. van de Bruck, A. C. Davis, D. F. Mota, and J. Shaw, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 76, 124034 (2007).

    Article  Google Scholar 

  13. P. Brax, C. van de Bruck, A. C. Davis, D. J. Shaw, and D. Ianuzzi, Phys. Rev. Lett. 104, 241101 (2010).

    Article  ADS  Google Scholar 

  14. Yu. N. Pokotilovski, Phys. At. Nucl. 69(6), 924 (2006).

    Article  Google Scholar 

  15. V. V. Nesvizhevski, G. Pignol, and K. V. Protasov, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 77, 034020 (2008).

    Article  Google Scholar 

  16. P. Brax and G. Pignol, Phys. Rev. Lett. 107, 111301 (2011).

    Article  ADS  Google Scholar 

  17. M. Ahlers, A. Lindner, A. Ringwald, L. Schrempp, and C. Weniger, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 77, 015018 (2008).

    Article  Google Scholar 

  18. H. Gies, D. F. Mota, and D. S. Shaw, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 77, 025016 (2008).

    Article  Google Scholar 

  19. J. H. Steffen, A. Upadhye, A. Baumbaugh, A. S. Chou, P. O. Mazur, R. Tomlin, A. Weltman, and A. Wester, Phys. Rev. Lett. 105, 261803 (2010).

    Article  ADS  Google Scholar 

  20. A. Upadhye, J. H. Steffen, and A. Chou, arXiv:1204.5476 [hep-ph].

  21. G. Rybka, M. Hotz, L. J. Rosenberg, S. J. Asztalos, G. Carosi, C. Hagmann, D. Kinton, K. van Bibber, J. Hoskins, C. Martin, P. Sikivie, D. B. Tanner, R. Bradley, and J. Clarke, Phys. Rev. Lett. 105, 051801 (2010).

    Article  ADS  Google Scholar 

  22. S. A. Werner, J.-L. Staudenmann, and R. Colella, Phys. Rev. Lett. 42, 1103 (1979); D. K. Atwood, M. A. Horne, C. G. Shull, and J. Arthur, Phys. Rev. Lett. 52, 1673 (1984).

    Article  ADS  Google Scholar 

  23. A. Steyerl, H. Nagel, F.-X. Schreiber, K.-A. Steinhauser, R. Gahler, W. Gläser, P. Ageron, J.-M. Astruc, N. Drexel, R. Gervais, and W. Mampe,, Phys. Lett. A 116, 347 (1986).

    Article  ADS  Google Scholar 

  24. J. Leitner and S. Okubo, Phys. Rev. B 136, 1542 (1964).

    Article  ADS  Google Scholar 

  25. D. Chang, R. N. Mohapatra, and S. Nussinov, Phys. Rev. Lett. 55, 2835 (1985).

    Article  ADS  Google Scholar 

  26. C. T. Hill and G. G. Ross, Nucl. Phys. B 311, 253 (1988).

    Article  ADS  Google Scholar 

  27. P. Fayet, Classical Quantum Gravity 13, A19 (1996).

    Article  ADS  Google Scholar 

  28. B. A. Dobrescu and I. Mocioiu, J. High Energy Phys. 11, 005 (2006).

    Article  ADS  Google Scholar 

  29. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978); F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

    Article  ADS  Google Scholar 

  30. C. Hangmann, H. Murayama, G. G. Raffelt, L. J. Rosenberg, and K. van Bibber [Particle Data Group], J. Phys. G: Nucl. Part. Phys. 37, 496 (2010).

    Google Scholar 

  31. P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983).

    Article  ADS  Google Scholar 

  32. M. Pospelov, A. Ritz, and M. Voloshin, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 78, 115012 (2008).

    Article  Google Scholar 

  33. J. E. Moody and F. Wilczek, Phys. Rev. D: Part. Fields 30, 130 (1984).

    Article  ADS  Google Scholar 

  34. E. G. Adelberger, J. H. Gundluch, B. P. Heckel, S. Hoedl, and S. Schlamminger, Prog. Part. Nucl. Phys. 62, 102 (2009).

    Article  ADS  Google Scholar 

  35. E. G. Adelberger, B. P. Heckel, and A. E. Nelson, Annu. Rev. Nucl. Part. Sci. 53, 77 (2003).

    Article  ADS  Google Scholar 

  36. J. Jaeckel and A. Ringwald, Annu. Rev. Nucl. Part. Sci. 60, 405 (2010).

    Article  ADS  Google Scholar 

  37. G. Raffelt, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 86, 015001 (2012).

    Article  Google Scholar 

  38. S. Baeyaler, V. V. Nesvizhevsky, K. V. Protasov, and A. Yu. Voronin, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 75, 075006 (2007).

    Article  Google Scholar 

  39. A. P. Serebrov, Phys. Lett. B 680, 423 (2009).

    Article  ADS  Google Scholar 

  40. V. K. Ignatovich and Yu. N. Pokotilovski, Eur. Phys. J. C 64, 19 (2009).

    Article  ADS  Google Scholar 

  41. O. Zimmer, Phys. Lett. B 685, 38 (2010); A. P. Serebrov, O. Zimmer, P. Geltenbort, A. K. Fomin, S. N. Ivanov, E. A. Kolomensky, M. S. Lasakov, V. M. Lobashev, A. N. Pirozhkov, V. E. Varlamov, A. V. Vasiliev, O. M. Zherebtsov, E. B. Aleksandrov, S. P. Dmitriev, and N. A. Dovator, JETP Lett. 91 (1), 6 (2010).

    Article  ADS  Google Scholar 

  42. Yu. N. Pokotilovski, Phys. Lett. B 686, 114 (2010).

    Article  ADS  Google Scholar 

  43. C. B. Fu, T. R. Gentile, and W. M. Snow, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 83, 031504 (2011).

    Article  Google Scholar 

  44. A. K. Petukhov, G. Pignol, D. Jullien, and K. H. Andersen, Phys. Rev. Lett. 105, 170401 (2010); A. K. Petukhov, G. Pignol, and R. Golub, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 84, 058501 (2011).

    Article  ADS  Google Scholar 

  45. G. G. Raffelt, Phys. Rep. 333–334, 593 (2000).

    Article  Google Scholar 

  46. K. Akama, arXiv:hep-th/0001113.

  47. V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 125, 136 (1983).

    Article  ADS  Google Scholar 

  48. M. Visser, Phys. Lett. B 159, 22 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  49. I. Antoniadis, S. Dimopoulos, and G. Dvali, Nucl. Phys. B 516, 70 (1998).

    Article  ADS  Google Scholar 

  50. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998).

    Article  ADS  Google Scholar 

  51. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 436, 257 (1998).

    Article  ADS  Google Scholar 

  52. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Rev. D: Part. Fields 59, 086004 (1999).

    Article  ADS  Google Scholar 

  53. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370, 4690 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  54. D. J. Kapner, T. S. Cook, E. G. Adelberger, J. H. Gundlach, B. R. Heckel, C. D. Hoyle, and H. E. Swanson, Phys. Rev. Lett. 98, 021101 (2007).

    Article  ADS  Google Scholar 

  55. V. V. Nesvizhevsky, Rev. Mod. Phys. A 27, 1230006 (2012).

    Article  ADS  Google Scholar 

  56. J. Jacubek, P. Schmidt-Wellenburg, P. Geltenbort, M. Platkevic, C. Plonka-Spehr, J. Solc, and T. Soldner, Nucl. Instrum. Methods Phys. Res., Sect. A 600, 651 (2009); T. Sanuki, S. Kamamiya, S. Kawasaki, and S. Sonoda, Nucl. Instrum. Methods Phys. Res., Sect. A 600, 657 (2009); J. Jacubek, M. Platkevic, P. SchmidtWellenburg, P. Geltenbort, C. Plonka-Spehr, and M. Daum, Nucl. Instrum. Methods Phys. Res., Sect. A 607, 45 (2009); S. Kawasaki, G. Ichikawa, M. Hino, Y. Kamiya, M. Kitaguchi, S. Kawamiya, T. Sanuki, and S. Sonoda, Nucl. Instrum. Methods Phys. Res., Sect. A 615, 42 (2010).

    Article  ADS  Google Scholar 

  57. V. V. Nesvizhevsky, A. K. Petukhov, H. G. Btsrner, T. A. Baranova, A. M. Gagarski, G. A. Petrov, K. V. Protasov, A. Yu. Voronin, S. Bae[beta]ler, H. Abele, A. Westphal, and L. Lucovac, Eur. Phys. J. C 40, 479 (2005).

    Article  ADS  Google Scholar 

  58. W. Drexel, Neutron News 12, 1 (1990).

    Google Scholar 

  59. U. Bonse and M. Hart, Appl. Phys. Lett. 6, 155 (1965).

    Article  ADS  Google Scholar 

  60. H. Rauch, W. Treimer, and U. Bonse, Phys. Lett. A 47, 369 (1974).

    Article  ADS  Google Scholar 

  61. A. I. Ioffe, Nucl. Instrum. Methods Phys. Res., Sect. A 268, 169 (1988).

    Article  ADS  Google Scholar 

  62. K. Eder, M. Gruber, A. Zeilinger, P. Geltenbort, R. Gähler, W. Mampe, and W. Drexel,, Nucl. Instrum. Methods Phys. Res., Sect. A 284, 171 (1989).

    Article  ADS  Google Scholar 

  63. G. van der Zouw, M. Weber, J. Felber, R. Gähler, P. Geltenbort, and A. Zeilinger,, Nucl. Instrum. Methods Phys. Res., Sect. A 440, 568 (2000).

    Article  ADS  Google Scholar 

  64. E. H. Cooke-Yahrborough, in Instrumentation Techniques in Nuclear Pulse Analysis (National Academy of Sciences, Washington, 1964), p. 207.

    Google Scholar 

  65. A. I. Mogilner, O. A. Sal’nikov, and L. A. Timokhin, Prib. Tekh. Eksp., No. 2, 22 (1966).

    Google Scholar 

  66. M. I. Novopoltsev and Yu. N. Pokotilovski, Instrum. Exp. Tech. 53(5), 635 (2010).

    Article  Google Scholar 

  67. M. Pietroni, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 72, 043535 (2005).

    Article  Google Scholar 

  68. K. A. Olive and M. Pospelov, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 77, 043534 (2008).

    Article  Google Scholar 

  69. K. Hinterbichler and J. Khoury, Phys. Rev. Lett. 104, 231301 (2010).

    Article  ADS  Google Scholar 

  70. A. Upadhye, arXiv:1210.7804 [hep-ph].

  71. A. I. Vainshtein, Phys. Lett. B 39, 393 (1972).

    Article  ADS  Google Scholar 

  72. A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 79, 064036 (2009).

    Article  Google Scholar 

  73. C. Deffayet, G. Esposito-Farese, and A. Vikman, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 79, 084003 (2009).

    Article  Google Scholar 

  74. N. Chow and J. Khoury, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 80, 024037 (2009).

    Article  Google Scholar 

  75. C. Bourrage and D. Seery, J. Cosmol. Astrophys. 08, 011 (2010).

    Article  ADS  Google Scholar 

  76. E. Babichev, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 83, 024008 (2011).

    Article  Google Scholar 

  77. M. Wyman, Phys. Rev. Lett. 106, 201102 (2011).

    Article  ADS  Google Scholar 

  78. P. Brax, C. Bourrage, and A.-C. Davis, J. Cosmol. Astrophys. 09, 020 (2011).

    Article  ADS  Google Scholar 

  79. A. Ali, R. Gannouji, Md. W. Hossain, and M. Sami, Phys. Lett. B 718, 5 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Pokotilovski.

Additional information

The article is published in the original.

A correction to this article is available at http://dx.doi.org/10.1134/S106377611309001X

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokotilovski, Y.N. Potential of the neutron Lloyd’s mirror interferometer for the search for new interactions. J. Exp. Theor. Phys. 116, 609–619 (2013). https://doi.org/10.1134/S1063776113030138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113030138

Keywords