Abstract
This paper is a short review on the foundations and recent advances in the microscopic Fermi-liquid (FL) theory. We demonstrate that this theory is built on five identities, which follow from conservation of the total charge (particle number), spin, and momentum in a translationally and SU(2)-invariant FL. These identities allow one to express the effective mass and quasiparticle residue in terms of an exact vertex function and also impose constraints on the “quasiparticle” and “incoherent” (or “low-energy” and “high-energy”) contributions to the observable quantities. Such constraints forbid certain Pomeranchuk instabilities of a FL, e.g., towards phases with order parameters that coincide with charge and spin currents. We provide diagrammatic derivations of these constraints and of the general (Leggett) formula for the susceptibility in arbitrary angular momentum channel, and illustrate the general relations through simple examples treated in perturbation theory.
Similar content being viewed by others
Notes
By “lattice effects,” we mean not only anisotropy but also multiple bands, which are inherent to Dirac and Weyl materials. Our model is applicable to these materials provided that (i) they are doped and (ii) the interaction on a scale much smaller than pF, in which case inter-band coupling can be neglected.
One example of such a divergence in a non-SU(2)-symmetric system is the ferromagnetic instability of a FL with Rashba spin-orbit coupling, in which case the entire spin susceptibility comes from high-energy fermions [34–36].
REFERENCES
E. M. Lifshits and L. P. Pitaevski, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Nauka, Moscow, 1978; Pergamon, New York, 1980).
E. M. Livshits and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 10: Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).
V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 1989; Butterworth–Heinemann, 1982).
L. P. Pitaevskii and S. Stringari, Bose–Einstein Condensate and Superfluidity (Oxford Univ. Press, Oxford, 2016).
L. D. Landau, Sov. Phys. JETP 3, 920 (1956).
L. D. Landau, Sov. Phys. JETP 5, 101 (1957).
L. D. Landau, Sov. Phys. JETP 8, 70 (1959).
A. Abrikosov, L. Gorkov, and I. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover Books on Physics Series (Dover, New York, 1975).
P. Nozieres and D. Pines, Theory of Quantum Liquids (Hachette, UK, 1999).
G. Baym and C. J. Pethick, Landau Fermi-Liquid Theory: Concepts and Applications (Wiley, New York, 1991).
P. Anderson, Basic Notions of Condensed Matter Physics (Benjamin/Cummings, London, Amsterdam, Don Mills, Sydney, Tokyo, 1984).
R. Shankar, Rev. Mod. Phys. 66, 129 (1994).
I. Pomeranchuk, Sov. Phys. JETP 8, 361 (1959).
L. P. Pitaevskii, Sov. Phys. JETP 10, 1267 (1960).
G. Baym and S. A. Chin, Nucl. Phys. A 262, 527 (1976).
E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Mackenzie, Ann. Rev. Condens. Matter Phys. 1, 153 (2010).
R. Fernandes and A. Chubukov, Rep. Progr. Phys. 80, 014503 (2017).
A. J. Leggett, Phys. Rev. 140, A1869 (1965).
C. Wu and S.-C. Zhang, Phys. Rev. Lett. 93, 036403 (2004).
C. Wu, K. Sun, E. Fradkin, and S.-C. Zhang, Phys. Rev. B 75, 115103 (2007).
A. V. Chubukov and D. L. Maslov, Phys. Rev. Lett. 103, 216401 (2009).
E. I. Kiselev, M. S. Scheurer, P. Wolfle, and J. Schmalian, Phys. Rev. B 95, 125122 (2017).
Y.-M. Wu, A. Klein, and A. V. Chubukov, Phys. Rev. B 97, 165101 (2018).
O. Vafek and A. Vishwanath, Ann. Rev. Condens. Matter Phys. 5, 83 (2014).
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
L. P. Pitaevskii, J. Low Temp. Phys. 164, 173 (2011).
P. S. Kondratenko, Sov. Phys. JETP 19, 972 (1964).
P. S. Kondratenko, Sov. Phys. JETP 20, 1032 (1965).
I. Dzyaloshinskii and P. Kondratenko, Sov. Phys. JETP 43, 1036 (1976).
A. V. Chubukov, J. J. Betouras, and D. V. Efremov, Phys. Rev. Lett. 112, 037202 (2014).
P. Woelfle, private commun.
S. Engelsberg and J. R. Schrieffer, Phys. Rev. 131, 993 (1963).
M. Fabrizio, Lecture Notes on Many-Body Theory (2013), published online.
R. A. Żak, D. L. Maslov, and D. Loss, Phys. Rev. B 82, 115415 (2010).
R. A. Żak, D. L. Maslov, and D. Loss, Phys. Rev. B 85, 115424 (2012).
A. Ashrafi, E. I. Rashba, and D. L. Maslov, Phys. Rev. B 88, 075115 (2013).
A. Leggett, Ann. Phys. 46, 76 (1968).
G. D. Mahan, Many-Particle Physics (Plenum, New York, 1990).
H. Ehrenreich, in Proceedings of the International School of Physics Enrico Fermi (1967), Vol. 34.
G. Eliashberg, Sov. Phys. JETP 14, 886 (1962).
A. M. Finkel’stein, Int. J. Mod. Phys. B 24, 1855 (2010).
A. V. Chubukov and P. Woelfle, Phys. Rev. B 89, 045108 (2014).
V. Oganesyan, S. A. Kivelson, and E. Fradkin, Phys. Rev. B 64, 195109 (2001).
V. A. Zyuzin, P. Sharma, and D. L. Maslov, unpublished.
V. M. Galitskii, Sov. Phys. JETP 7, 104 (1957).
A. V. Chubukov and D. L. Maslov, Phys. Rev. B 81, 245102 (2010).
A. A. Abrikosov and I. M. Khalatnikov, Sov. Phys. JETP 6, 888 (1958).
J. R. Engelbrecht, M. Randeria, and L. Zhang, Phys. Rev. B 45, 10135 (1992).
ACKNOWLEDGMENTS
We thank J. Schmalian, P. Woelfle, and Y. Wu for valuable discussions. The work was supported by NSF DMR-1523036 (A. V. C. and A. K.) and NSF DMR-1720816 (D. L. M.).
Author information
Authors and Affiliations
Corresponding author
Additional information
Contribution for the JETP special issue in honor of L.P. Pitaevskii’s 85th birthday
The article is published in the original.
Rights and permissions
About this article
Cite this article
Chubukov, A.V., Klein, A. & Maslov, D.L. Fermi-Liquid Theory and Pomeranchuk Instabilities: Fundamentals and New Developments. J. Exp. Theor. Phys. 127, 826–843 (2018). https://doi.org/10.1134/S1063776118110122
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063776118110122