Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Application of a folding-model optical potential to analyzing inelastic pion–nucleus scattering and the in-medium effect on a pion–nucleon amplitude

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The folding-model optical potential is generalized in such a way as to apply it to calculating the cross sections for inelastic scattering of π ±-mesons on 28Si, 40Ca, 58Ni, and 208Pb nuclei at the energies of 162, 180, 226, and 291 MeV leading to the excitation of the 2+ and 3 collective states. In doing this, use is made of known nucleon-density distributions in nuclei and the pion–nucleon scattering amplitude whose parameters were obtained previously by fitting the elastic scattering cross sections for the same nuclei. Thus, the values of quadrupole (β 2) and octupole (β 3) deformations of nuclei appear here as the only adjustable parameters. The scattering cross section is calculated by solving the relativistic wave equation, whereby effects of relativization and distortion in the entrance and exit scattering channels are taken exactly into account. The cross sections calculated in this way for inelastic scattering are in good agreement with respective experimental data. The importance of the inclusion of in-medium effects in choosing parameters of the pion–nucleon amplitude is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Lukyanov, E. V. Zemlyanaya, and K. V. Lukyanov, Phys. Atom. Nucl. 69, 240 (2006); JINR Preprint No. P4-2004-114 (Joint Inst. Nucl. Res., Dubna, 2004).

    Article  ADS  Google Scholar 

  2. V. K. Lukyanov, E. V. Zemlyanaya, K. V. Lukyanov, and K. M. Hanna, Phys. Atom. Nucl. 73, 1443 (2010).

    Article  ADS  Google Scholar 

  3. V. K. Lukyanov, E. V. Zemlyanaya, K. V. Lukyanov, Ali El Lithi, I. Abdulmagead, and B. Slowiński, Bull. Russ. Acad. Sci.: Phys. 77, 427 (2013).

    Article  Google Scholar 

  4. V. K. Lukyanov, E. V. Zemlyanaya, K. V. Lukyanov, E. I. Zhabitskaya, and M. V. Zhabitsky, Phys. At. Nucl. 77, 100 (2014).

    Article  Google Scholar 

  5. V. K. Lukyanov, E. V. Zemlyanaya, K. V. Lukyanov, A. Y. Ellithi, and I. A. M. Abdul-Magead, Int. J. Mod. Phys. E 24 (5), 1550035 (2015).

    Article  ADS  Google Scholar 

  6. A. S. Shalaby, Y. M. Hassan, and M. M. H. El-Gogary, Braz. J. Phys. 37 (2A), 388 (2007).

    Article  ADS  Google Scholar 

  7. R. J. Glauber, in Lectures in Theoretical Physics (Interscience, New York, 1959), p. 315.

    Google Scholar 

  8. V. K. Lukyanov, E. V. Zemlyanaya, K. V. Lukyanov, Ali El Lithi, and I. Abdulmagead, Bull. Russ. Acad. Sci.: Phys. 78, 421 (2014).

    Article  Google Scholar 

  9. H. Lesnyak and L. Lesnyak, Nucl. Phys. B 38, 221 (1972).

    Article  ADS  Google Scholar 

  10. R. G. Satchler, Direct Nuclear Reactions (Clarendon, Oxford, New York, 1983).

    MATH  Google Scholar 

  11. P. D. Kunz and E. Rost, in Computational Nuclear Physics, Ed. by K. Langanke et al. (Springer, Berlin, 1993), Vol. 2, p. 88.

  12. B. M. Preedom et al., Nucl. Phys. A 326, 385 (1979).

    Article  ADS  Google Scholar 

  13. P. Gretillat et al., Nucl. Phys. A 364, 270 (1981).

    Article  ADS  Google Scholar 

  14. C. Olmer et al., Phys. Rev. C 21, 254 (1980).

    Article  ADS  Google Scholar 

  15. D. F. Geesaman, C. Olmer, B. Zeidman, et al., Phys. Rev. C 23, 2635 (1981).

    Article  ADS  Google Scholar 

  16. V. K. Lukyanov, E. V. Zemlyanaya, and B. Slovinski, Phys. At. Nucl. 67, 1282 (2004).

    Article  Google Scholar 

  17. D. T. Khoa and G. R. Satchler, Nucl. Phys. A 668, 3 (2000).

    Article  ADS  Google Scholar 

  18. J. D. Patterson and R. J. Peterson, Nucl. Phys. A 717, 235 (2003).

    Article  ADS  Google Scholar 

  19. M. P. Locher, O. Steinmann, and N. Straumann, Nucl. Phys. B 27, 598 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Lukyanov.

Additional information

Original Russian Text © V.K. Lukyanov, E.V. Zemlyanaya, K.V. Lukyanov, I.A.M. Abdul-Magead, 2016, published in Yadernaya Fizika, 2016, Vol. 79, No. 6, pp. 670–678.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukyanov, V.K., Zemlyanaya, E.V., Lukyanov, K.V. et al. Application of a folding-model optical potential to analyzing inelastic pion–nucleus scattering and the in-medium effect on a pion–nucleon amplitude. Phys. Atom. Nuclei 79, 978–986 (2016). https://doi.org/10.1134/S1063778816060156

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816060156