Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Depth concentrations of deuterium ions implanted into some pure metals and alloys

  • Physics of Solid State and Condensed Matter
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Pure metals (Cu, Ti, Zr, V, Pd) and diluted Pd alloys (Pd-Ag, Pd-Pt, Pd-Ru, Pd-Rh) were implanted by 25-keV deuterium ions at fluences in the range (1.2–2.3) × 1022 m−2. The post-treatment depth distributions of deuterium ions were measured 10 days and three months after the implantation by using Elastic Recoil Detection Analysis (ERDA) and Rutherford Backscattering (RBS). Comparison of the obtained results allowed us to make conclusions about relative stability of deuterium and hydrogen gases in pure metals and diluted Pd alloys. Very high diffusion rates of implanted deuterium ions in V and Pd pure metals and Pd alloys were observed. Small-angle X-ray scattering revealed formation of nanosized defects in implanted corundum and titanium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Winter and J. Nitsch, Hydrogen as an Energy Carrier: Technologies, Systems, Economy (Springer, 1988).

  2. L. Schlapbach and A. Zuttel, “Hydrogen-Storage Materials for Mobile Applications,” Nature 414, 353–361 (2001).

    Article  ADS  Google Scholar 

  3. A. Zuttel, “Materials for Hydrogen Storage,” Mater. Today 6, 24–33 (2003).

    Article  Google Scholar 

  4. L. Zaluski, A. Zaluska, and J. O. Strom-Olsen, “Nanocrystalline Metal Hydrides,” J. Alloys Compd. 253–254, 70–79 (1997).

    Article  Google Scholar 

  5. K. Miyamoto, Fundamentals of Plasma Physics and Controlled Fusion (Fizmatlit, Moscow, 2007).

    Google Scholar 

  6. V. N. Mikhailov et al., Lithium for Fusion Reactors and Space Nuclear Power Systems of the 21st Century (Energoatomizdat, Moscow, 1999).

    Google Scholar 

  7. Metal Hydrides as Materials of Nuclear Reactions, Ed. by W. M. Mueller, J. P. Blackledge, and G. G. Libowitz (Elsevier, New York, London, 1968) pp. 58–83.

    Google Scholar 

  8. W. Bauer, “Surface Processes in Plasma Wall Interactions,” J. Nucl. Mater. 76–77, 3–15 (1978).

    Article  Google Scholar 

  9. D. L. Smith, “Sputtering Model for Fusion Reactor First-Wall Materials,” J. Nucl. Mater. 75, 20–31 (1978).

    Article  ADS  Google Scholar 

  10. P. B. Johnson and D. J. Mazey, “Helium-Bubble Superlattice in Copper and Nickel,” Nature 281, 359–360 (1979).

    Article  ADS  Google Scholar 

  11. P. B. Johnson and D. J. Mazey, “The Gas-Bubble Superlattice and the Development of Surface Structure in He+ and H+ Irradiated Metals at 300 K,” J. Nucl. Mater. 93–94, 721–727 (1980).

    Article  Google Scholar 

  12. B. A. Kalin and I. I. Chernov, “Lattice Organization of Pore and Bubble Structure in Irradiated Metals and Alloys,” At. Sci. Abroad 10, 3–9 (1986).

    Google Scholar 

  13. W. Jager and J. Roth, “Microstructure of Ni and Stainless Steel After Multiple Energy He and D Implantation,” J. Nucl. Mater. 93-94, 756–766 (1980).

    Article  Google Scholar 

  14. R. Wiśniewski, “High Pressure Apparatus for Gaseous Hydrogen up to 25 Kilobars and Temperature Range −50°C to +100°C,” Rev. Sci. Instrum. 41, 455–464 (1970).

    ADS  Google Scholar 

  15. B. Baranowski and S. M. Filipek, “45 Years of Nickel Hydrides,” Polish J. Chem. 79, 789–806 (2005); http://malina.inchf.edu.pl/person/filipek/html.

    Google Scholar 

  16. A. Yu. Didyk et al., “Studies of Radiation Effects in Materials on ECR Heavy Ion Source Beam Line at FLNR,” in Proceedings of the 11st International Conference on Radiation Physics of Solids, Sevastopol, Crimea, Ukraine, July 2001 (2001), pp. 340–350.

  17. J. P. Biersack and L. G. Haggmark, “A Monte Carlo Computer Program for the Transport of Energetic Ions in Amorphous Targets,” Nucl. Instrum. Methods Phys. Res. B 174, 257–269 (1980); http://www.srim.org.

    Article  Google Scholar 

  18. R. Wiśniewski and A. J. Rostockil, “Hall Effects in Pd-H System,” Phys. Rev. B 3, 251–252 (1971).

    Article  ADS  Google Scholar 

  19. L. Hrubčin et al., “Application of the ERD Method for Hydrogen Determination in Silicon (Oxy)Nitride Thin Films Prepared by ECR Plasma Deposition,” Nucl. Instrum. Methods Phys. Res. B 85, 60–62 (1994).

    Article  ADS  Google Scholar 

  20. R. Ishigami, Y. Ito, and K. Yasida, “In Situ ERDA Measurements of Hydrogen Isotope Concentrations in Palladium at Atmospheric Pressure,” Nucl. Instrum. Methods Phys. Res. B 266, 1319–1323 (2008).

    Article  ADS  Google Scholar 

  21. A. M. Borisov et al., “Peculiarities of Impulse Polyenergetic Implantation,” Izv. Rus. Acad. Sci., Phys. 64, 763–766 (2000).

    Google Scholar 

  22. F. F. Komarov, Ion Implantation to Metals (Metallurgy, Moscow, 1990) [in Russian].

    Google Scholar 

  23. W. Jager et al., Radiat. Eff. Defects Solids 78, 315–325 (1983).

    Article  ADS  Google Scholar 

  24. V. G. Klevtsov et al., “Diffusion Cleaning of Hydrogen Isotopes by Palladium Filters,” in Hydrogen Isotopes. Fundamental and Applied Research: Collection of Papers, Ed. by A. A. Uchimchyk (Sarov, 2009), pp. 360–365.

  25. A. A. Uchimchyk and V. K. Gaevoj, “Studies of Hydrogen Isotope Permeability Through Some Constructive Materials,” in Hydrogen Isotopes. Fundamental and Applied Research: Collection of Papers, Ed. by A. A. Uchimchyk (Sarov, 2009), pp. 330–335.

  26. R. N. Musjaev et al., “Study of Superpermeability Phenomenon of Hydrogen Isotopes Through Vanadium Membrane on PROMETEI Setup,” in Hydrogen Isotopes. Fundamental and Applied Research: Collection of Papers, Ed. by A. A. Uchimchyk (Sarov, 2009), pp. 355–359.

  27. A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, “Structural Materials Science End-Station at the Kurchatov Synchrotron Radiation Source: Recent Instrumentation Upgrades and Experimental Results,” Nucl. Instrum. Methods Phys. Res. A 603, 95–98 (2009).

    Article  ADS  Google Scholar 

  28. D. I. Svergun, “Determination of the Regularization Parameter in Indirect-Transform Methods Using Perceptual Criteria,” J. Appl. Crystallogr. 25, 495–503 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Didyk.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Didyk, A.Y., Wiśniewski, R., Kitowski, K. et al. Depth concentrations of deuterium ions implanted into some pure metals and alloys. Phys. Part. Nuclei Lett. 9, 86–95 (2012). https://doi.org/10.1134/S1547477112010062

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477112010062

Keywords