Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hydrogen retention by vanadium-titanium alloys

  • Materials of Power Engineering and Radiation-Resistant Materials
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Hydrogen retention in vanadium and its binary alloys with titanium are investigated by means of hydrogen thermal desorption spectrometry. The samples are saturated with hydrogen for 2000 h at a temperature of 620 K in an autoclave, where hydrogen is fed at a pressure of 16.8 MPa. It is shown that in V-Ti alloys there are two main types of traps for hydrogen and from which the hydrogen release occurs in the temperature range of 780–790 (peak I) and 870–880 K (peak II) The position of peak I on the temperature scale does not depend on the alloy composition, and the intensity and position of peak II on the temperature scale are determined by the alloy composition. Titanium non-monotonically affects the amount of hydrogen retained: an addition of 0.5% Ti decreases, 1 and 5% Ti increases, and 10% Ti again decreases the amount of hydrogen in the alloy. A physical explanation of the appearance of two peaks of hydrogen thermal desorption and nonmonotonic influence of titanium on the amount of hydrogen in vanadium is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, D.L., Loomis, B.A., and Diercks, D.R., Vanadium-base alloys for fusion reactor applications — a review, J. Nucl. Mater., 1985, vol. 135, pp. 125–139.

    Article  CAS  Google Scholar 

  2. Votinov, S.N. and Dedyurin, A.I., Vanadium based alloys—prospective low-activation structural materials for thermonuclear reactors, Vopr. At. Nauki Tekhn. Ser. Materialoved. Nov. Mater., 1995, iss. 1 (52), pp. 66–73.

    Google Scholar 

  3. Kalin, B.A., Staltsov, M.S., and Chernov, I.I., Low-activation vanadium alloys for nuclear and thermonuclear energy: Principles of alloying, radiation resistance, problem of helium and hydrogen, Nucl. Phys. Engin., 2011, vol. 2, no. 4, pp. 320–344.

    Google Scholar 

  4. Alekseev, O.A., Votinov, S.N., Gubkin, I.N., Karasev, Yu.V., Kolotushkin, V.P., Nikulin, S.A., Potanina, L.V., Sergeev, S.G., and Sokolovskii, D.V., Vanadium alloy cladding by ferritic stainless steel as material for fast reactors, Perspekt. Mater., 2009, no. 4, pp. 34–42.

    Google Scholar 

  5. Buxbaum, R.E., Subramanian, R., Park, J.H., and Smith, D.L., Hydrogen transport and embrittlement for palladium coated vanadium-chromium-titanium alloys. J. Nucl. Mater., 1996, vol. 233–237, pp. 510–512.

    Article  Google Scholar 

  6. Natesan, K. and Soppet, W.K., Performance of V-Cr-Ti alloys in a hydrogen environment, J. Nucl. Mater., 2000, vol. 283–287, pp. 1316–1321.

    Article  Google Scholar 

  7. Aoyagi, K., Torres, E.P., Suda, T., and Ohnuki, S., Effect of hydrogen accumulation on mechanical property and microstructure of V-Cr-Ti alloys, J. Nucl. Mater., 2000, vol. 283–287, pp. 876–879.

    Article  Google Scholar 

  8. Chen, J., Xu, Z., and Yang, L., The influence of hydrogen on tensile properties of V-base alloys developed in China, J. Nucl. Mater., 2002, vol. 307–311, pp. 566–570.

    Article  Google Scholar 

  9. Torres, P., Aoyagi, K., Suda, T., Watanabe, S., and Ohnuki, S., Hydride formation and fracture of vanadium alloys. J. Nucl. Mater., 2002, vol. 307–311, pp. 625–629.

    Article  Google Scholar 

  10. Blokhin, D.A. and Chernov, V.M., Nucleation of hydrogen and helium in structural materials of fusion and fission reactors, Vopr. At. Nauki Tekhn. Ser. Materialoved. Nov. Mater., 2008, no. 2(71), pp. 112–122.

    Google Scholar 

  11. Petrov, V.S., Bondarenko, G.G., Vasilyevsky, V.V., and Loginov, B.A., Investigation of Ti and Nb interactions with hydrogen by thermogravimetric analysis and scanning probe microscopy methods, Perspekt. Mater., 2005, no. 6, pp. 26–29.

    Google Scholar 

  12. Kalin, B.A., Kalashnikov, A.N., Chernov, I.I., and Shmakov, A.A., Hydrogen problems in reactor materials, Proc. 7th Int. School of Young Scientists and Specialists (IHISM’11) “Interaction of hydrogen isotopes with structural materials,” Zvenigorod, 2011, pp. 10–54.

    Google Scholar 

  13. Fizicheskoe materialovedenie. Tom 6. Konstruktsionnye materially yadernoi tekhniki (Physical Material Science. Vol. 6. Structural Materials of Nuclear Technique), Kalin, B.A., Ed., Moscow: NRNU MEPhI, 2012.

    Google Scholar 

  14. Vaynman, A.B., Melekhov, R.K., and Smiyan, O.D., Vodorodnoye okhrupchivaniye elementov kotlov vysokogo davleniya (Hydrogen Brittleness of High-Pressure Boilers), Kiev: Naukova Dumka, 1991.

    Google Scholar 

  15. Gui, Li-Jiang, Liu, Yue-Lin, Wang, Wei-Tian, Li-Jiang Gui, Yue-Lin Liu, Wei-Tian Wang, Jin, Shuo, Zhang, Ying, Lu, Guang-Hong, and Yao, Jun-En, First principles investigation on vacancy trapping behaviors of hydrogen in vanadium, J. Nucl. Mater., 2013, vol. 442,Suppl. 1, pp. 688–693.

    Article  Google Scholar 

  16. Muzgin, V.N., Khamzina, L.B., and Zolotavin, V.L., Analiticheskaya khimiya vanadiya (Analytical Chemistry of Vanadium), Moscow: Nauka, 1981.

    Google Scholar 

  17. Barabash, O.M. and Koval, Yu.N., Struktura i svoystva metallov i splavov: Kristallicheskaya struktura metallov i splavov (Structure and Properties of Metals and Alloys: Crystal Structure of Metals and Alloys), Kiev: Naukova Dumka, 1986.

    Google Scholar 

  18. Barin, I., Thermochemical Data of Pure Substances. Part I-III, Weineheim: VCH Verlags, 1995.

    Book  Google Scholar 

  19. Golubkov A.N., Yukhimchuk A.A.. Equilibrium pressure of protium and deuterium over vanadium dihydrate phase, Proc. NATO Adv. Res. Workshop on Hydrogen Materials Science and Chemistry of Materials, 1999, Katsiveli, Yalta, Ukraine, pp. 255–264.

    Google Scholar 

  20. Anan’in, V.M., Kalin, B.A., Korchagin, O.N., Staltsov, M.S., and Chernov, I.I., Investigation of oxygen-titanium interaction in vanadium by internal friction method, Inorganic Mater.: Appl. Res., 2012, vol. 3, pp. 243–247.

    Article  Google Scholar 

  21. Ruzinov, L.P. and Gulyanitsky, B.S., Ravnovesnye prevrashcheniya metallurgicheskikh reaktsii (Equilibrium Transformations of Metallurgical Reactions), Moscow: Metallurgiya, 1975.

    Google Scholar 

  22. Votinov, S.N., Kolotushkin, V.P., and Parfenov, A.A., http://bus.znate.ru/docs/index-27154.html?page=3).

  23. Yefimov, Yu.V., Baron, V.V., and Savitsky, Ye.M., Vanadiy i ego splavy (Vanadium and Its Alloys), Moscow: Nauka, 1969.

    Google Scholar 

  24. Chernov, I.I., Staltsov, M.S., Kalin, B.A., Kyi, Zin Oo, Aung, Kyaw Zaw, Statsenko, V.I., Korchagin, O.N., and Staltsova, O.S., An investigation of He thermodesorption behavior in V-Ti alloys irradiated with He+ ions at room temperature, Fiz. Khim. Obrab. Mater., 2012, no. 3, pp. 22–29.

    Google Scholar 

  25. Chernov, I.I., Staltsov, M.S., Kalin, B.A., Mezina, O.S., Oo, K.Z., and Chernov, V.M., Mechanisms of helium porosity formation in vanadium alloys as a function of the chemical composition, At. Energy, 2011, vol. 109, pp. 176–183.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aung Kyaw Zaw.

Additional information

Original Russian Text © Aung Kyaw Zaw, I.I. Chernov, M.S. Staltsov, B.A. Kalin, V.S. Efimov, 2014, published in Perspektivnye Materialy, 2014, No. 7, pp. 30–36.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaw, A.K., Chernov, I.I., Staltsov, M.S. et al. Hydrogen retention by vanadium-titanium alloys. Inorg. Mater. Appl. Res. 6, 138–142 (2015). https://doi.org/10.1134/S2075113315020045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113315020045

Keywords