Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Determination of the Region Border Prior to the Limit Steady Modes of Electric Power Systems by the Analysis Method of the Tropical Geometry of the Power Balance Equations

  • CONTROL IN TECHNICAL SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The analysis of the known approach (Kirshtein, B.K. and Litvinov, G.L., Autom. Remote Control, 2014, vol. 75, no. 10, pp. 1802–1813.) in which tropical geometry over complex multifields of active power balances is used to estimate the region of existence of the electric power system mode. Its limitations are shown and a new approach is proposed, a criterion is also represented for determining the boundary that precedes the violation of the stability of the energy system due to the restructuring of the tropical set of solutions. The developed approach allows to determine the approach of the power system mode to the limit by the known parameters of the lines and the dynamics of changes of the nodes voltage modules and the nodes load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Venikov, V.A., Stroev, V.A., Idelchik, V.I., and Tarasov, V.I., Estimation of Electrical Power System Steady State Stability in Load Flow Calculations, IEEE Trans. Power App. Syst., 1975, vol. 94, no. 3, pp. 1034–1041.

    Article  Google Scholar 

  2. Dobson, A. and Lu, L., New Methods for Computing a Closest Saddle Node Bifurcation and Worst Case Load Power Margin for Voltage Collapse, IEEE Trans. Power Syst., 1993, vol. 8, no. 3, pp. 905–911.

    Article  Google Scholar 

  3. Ayuev, B.I., Davydov, V.V., and Erokhin, P.M., Optimization Model of Limit Modes of Electrical Systems, Elektrichestvo, 2010, no. 11, pp. 2–12.

  4. Voropai, N.I., Golub, Efimov, D.N., et al., Spectral and Modal Methods for Studying Stability and Control of Electric Power Systems, Autom. Remote Control, 2020, vol. 81, no. 10, pp. 1751–1774.

    Article  MathSciNet  Google Scholar 

  5. Wang, Y., Lopez, J.A., and Sznaier, M., Convex Optimization Approaches to Information Structured Decentralized Control, IEEE Trans. Autom. Control, 2018, vol. 63, no. 10, pp. 3393–3403.

    Article  MathSciNet  Google Scholar 

  6. Matveev, A.S., MacHado, J.E., Ortega, R., et al., Tool for Analysis of Existence of Equilibria and Voltage Stability in Power Systems with Constant Power Loads, IEEE Trans. Autom. Control, 2020, vol. 65, no. 11, pp. 4726–4740.

    Article  MathSciNet  Google Scholar 

  7. Ghiocel, S.G. and Chow J.H., A Power Flow Method Using a New Bus Type for Computing Steady-State Voltage Stability Margins, IEEE Trans. Power Syst., 2014, vol. 29, no. 2, pp. 958–965.

    Article  Google Scholar 

  8. Kirshtein, B.K. and Litvinov, G.L., Analyzing Stable Regimes of Electrical Power Systems and Tropical Geometry of Power Balance Equations Over Complex Multifields, Autom. Remote Control, 2014, vol. 75, no. 10, pp. 1802–1813.

    Article  Google Scholar 

  9. Su, H.Y. and Liu, C.W., Estimating the Voltage Stability Margin Using PMU Measurements, IEEE Trans. Power Syst., 2016, vol. 31, no. 4, pp. 3221–3229.

    Article  Google Scholar 

  10. Ayuev, B.I., Davydov, V.V., and Erokhin, P.M., Fast and Reliable Method of Searching Power System Marginal States, IEEE Trans. Power Syst., 2016, vol. 31, no. 6, pp. 4525–4533. https://doi.org/10.1109/TPWRS.2016.2538299

    Article  Google Scholar 

  11. Sharov, Ju.V., About Development of Analysis Methods Static Stability of Electric Power Systems, Elektrichestvo, 2017, no. 1, pp. 12–18.

  12. Sharov, Ju.V., Application Modal Approach for Solving the Problem of Ensuring Power System Static Stability, Izvestiya RAN. Energetika, 2017, no 2, pp. 13–29.

  13. Rao, S., Tylavsky, D., and Feng, Y., Estimating the Saddle-Node Bifurcation Point of Static Power Systems Using the Holomorphic Embedding Method, Int. J. Electr. Power Energ. Syst., 2017, vol. 84, pp. 1–12.

    Article  Google Scholar 

  14. Liu, C., Wang, B., Hu, F., Sun, K., and Bak, C.L., Online Voltage Stability Assessment for Load Areas Based On the Holomorphic Embedding Method, IEEE Trans. Power Syst., 2018, vol. 33, no. 4, pp. 3720–3734.

    Article  Google Scholar 

  15. Qiu, Y., Wu, H., Song, Y., and Wang, J., Global Approximation of Static Voltage Stability Region Boundaries Considering Generator Reactive Power Limits, IEEE Trans. Power Syst., 2018, vol. 33, no. 5, pp. 5682–5691.

    Article  Google Scholar 

  16. Wang, L. and Chiang, H.D., Group-Based Line Switching for Enhancing Contingency-Constrained Static Voltage Stability, IEEE Trans. Power Syst., 2020, vol. 35, no. 2, pp. 1489–1498.

    Article  Google Scholar 

  17. Ali, M., Gryazina, E., Khamisov, O., and Sayfutdinov, T., Online Assessment of Voltage Stability Using Newton-Corrector Algorithm, IET Generat., Transmiss. Distribut., 2020, vol. 14, no. 19, pp. 4207–4216.

    Google Scholar 

  18. Bulatov, Yu.N., Kryukov, A.V., Suslov K.V., et al., Timely Determination of Static Stability Margins in Power Supply Systems Equipped with Distributed Generation Installations, Vestnik Irkut. Gos. Tekh. Univ., 2021, vol. 25, no. 1(156), pp. 31–43. https://doi.org/10.21285/1814-3520-2021-1-31-43

  19. Bulatov, Y., Kryukov, A., Suslov, K., et al., A Stochastic Model for Determining Static Stability Margins in Electric Power Systems, Computation, 2022, vol. 10, no. 5. https://doi.org/10.3390/computation10050067

  20. Weng, Y., Yu, S., Dvijotham, K., and Nguyen, H.D., Fixed-Point Theorem-Based Voltage Stability Margin Estimation Techniques for Distribution Systems with Renewables, IEEE Transact. Industr. Inform., 2022, vol. 18, no. 6, pp. 3766–3776. https://doi.org/10.1109/TII.2021.3112097

    Article  Google Scholar 

  21. Zhang, W., Wang, T., and Chiang, H.D., A Novel FFHE-Inspired Method for Large Power System Static Stability Computation, IEEE Trans. Power Syst., 2022, vol. 37, no. 1, pp. 726–737. https://doi.org/10.1109/TPWRS.2021.3093236

    Article  Google Scholar 

  22. Ali, M., Gryazina, E., Dymarsky, A., and Vorobev, P., Calculating Voltage Feasibility Boundaries for Power System Security Assessment, Int. J. Electr. Power Energ. Syst., 2023, vol. 146, 108739. https://doi.org/10.1016/j.ijepes.2022.108739

  23. Ali, M., Ali, M.H., Gryazina, E., and Terzija, V., Calculating Multiple Loadability Points in the Power Flow Solution Space, Int. J. Electr. Power Energ. Syst., 2023, vol. 148, 108915. https://doi.org/10.1016/j.ijepes.2022.108915

  24. Machado, J.E., Grino, R., Barabanov, N., et al., On Existence of Equilibria of Multi-Port Linear AC Networks with Constant-Power Loads, IEEE Transact. Circuits and Systems. Part 1: Regular Papers, 2017, vol. 64, no. 10, pp. 2772–2782. https://doi.org/10.1109/TCSI.2017.2697906

    Article  Google Scholar 

  25. Danilov, M.I. and Romanenko, I.G., Determination of Power Flows and Temperature of Electrical Network Wires of a Power System Steady State, Power Technol. Engineer., 2023, vol. 56, no. 5, pp. 739–750. https://doi.org/10.1007/s10749-023-01583-z

    Article  Google Scholar 

  26. Karimi, M., Shahriari, A., Aghamohammadi, M.R., et al., Application of Newton-Based Load Flow Methods for Determining Steady-State Condition of Well and Ill-Conditioned Power Systems: A Review, Int. J. Electr. Power Energ. Syst., 2019, vol. 113, pp. 298–309.

    Article  Google Scholar 

  27. Zorin, I.A. and Gryazina, E.N., An Overview of Semidefinite Relaxations for Optimal Power Flow Problem, Autom. Remote Control, 2019, vol. 80, no. 5, pp. 813–833. https://doi.org/10.1134/S0005231019050027

    Article  MathSciNet  Google Scholar 

  28. Danilov, M.I. and Romanenko, I.G., Identification of Unauthorized Electric-Power Consumption in the Phases of Distribution Networks with Automated Metering Systems, Power Technol. Engineer., 2022, vol. 56, no. 3, pp. 414–422. https://doi.org/10.1007/s10749-023-01530-y

    Article  Google Scholar 

  29. Danilov, M.I. and Romanenko, I.G., Operational Identification of Resistances of Wires of 380 V Distribution Networks by Automated Accounting Systems, Energetika. Izv. Vuzov i Energ. Ob”edinenii SNG, 2023, vol. 66, no. 2, pp. 124–140. https://doi.org/10.21122/1029-7448-2023-66-2-124-140

  30. Bonchuk, I.A., Shaposhnikov, A.P., Sozinov, M.A., and Erokhin, P.M., Optimization of the Operating Modes of Power Plants in Isolated Electrical Power Systems, Power Technol. Engineer., 2021, vol. 55, no. 3, pp. 445–453. https://doi.org/10.1007/s10749-021-01380-6

    Article  Google Scholar 

Download references

Funding

The work was carried out with the financial support of the Priority 2030 program (grant no. 122060300035-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. I. Danilov or I. G. Romanenko.

Additional information

This paper was recommended for publication by M.V. Khlebnikov, a member of the Editorial Board

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

Expressions (4) and (5) are obtained from (3) as follows:

$$\begin{gathered} {{U}^{2}} + \left( {{{p}^{{\operatorname{Re} }}} - j{{p}^{{\operatorname{Im} }}}} \right)(R + jX) = EU{{e}^{{ - j{{\Psi }_{U}}}}}, \\ {{U}^{2}} + {{p}^{{\operatorname{Re} }}}R + {{p}^{{\operatorname{Im} }}}X + j\left( {{{p}^{{\operatorname{Re} }}}X + {{p}^{{\operatorname{Im} }}}R} \right) = EU{{e}^{{ - j{{\Psi }_{U}}}}}. \\ \end{gathered} $$
(A.1)

The balance of modules of expression (A.1) is reduced to a quadratic equation for the unknown \(\hat {U}\) = U  2:

$$a{{\hat {U}}^{2}} + b\hat {U} + c = 0,$$
(A.2)

where

$$a = 1,\quad b = 2\left( {{{p}^{{\operatorname{Re} }}}R + {{p}^{{\operatorname{Im} }}}X} \right) - {{E}^{2}},\quad c = \left( {{{R}^{2}} + {{X}^{2}}} \right)\left[ {{{{\left( {{{p}^{{\operatorname{Re} }}}} \right)}}^{2}} + {{{\left( {{{p}^{{\operatorname{Im} }}}} \right)}}^{2}}} \right].$$

The solution to (A.2) is expression (4). The angle ΨU in expression (5) is determined by substituting the found expression (4) for U into Eq. (A.1).

Expression (6) of the article is obtained from the load bus power equation:

$$\dot {p} = {{p}^{{\operatorname{Re} }}} + j{{p}^{{\operatorname{Im} }}} = \dot {U}\left( {\frac{{\dot {E} - \dot {U}}}{{R + jX}}} \right){\kern 1pt} ^*{\kern 1pt} .$$
(A.3)

From (A.3) we obtain

$$\frac{{{{p}^{{\operatorname{Im} }}}}}{{{{p}^{{\operatorname{Re} }}}}} = \tan \phi = \frac{{EX\cos {{\Psi }_{U}} - UX + ER\sin {{\Psi }_{U}}}}{{ER\cos {{\Psi }_{U}} - UR - EX\sin {{\Psi }_{U}}}}.$$
(A.4)

Let’s express the voltage modulus U of the load bus from (A.4)

$$U = E\left( {\cos {{\Psi }_{U}} + \sin {{\Psi }_{U}}\left( {\frac{{R + X\tan \phi }}{{X - R\tan \phi }}} \right)} \right)$$

and put it into the expression for active power obtained from (A.3):

$${{p}^{{\operatorname{Re} }}} = \frac{U}{{({{R}^{2}} + {{X}^{2}})}}\left[ {R(E\cos {{\Psi }_{U}} - U) - EX\sin {{\Psi }_{U}}} \right].$$
(A.5)

Taking the derivative of (A.5) with respect to the angle ΨU and equating it to zero, we obtain the expression

$$\frac{{d{{p}^{{\operatorname{Re} }}}}}{{d{{\Psi }_{U}}}} = \frac{{\sin (2{{\Psi }_{U}})(R + X\tan \phi ) - \cos (2{{\Psi }_{U}})(R\tan \phi - X)}}{{{{{(X - R\tan \phi )}}^{2}}}} = 0,$$
(A.6)

from which we determine

$$\tan (2{{\Psi }_{U}}) = \frac{{R\tan \phi - X}}{{R + X\tan \phi }}.$$
(A.7)

The resulting expression (A.7) is equivalent to Eq. (6).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, M.I., Romanenko, I.G. On the Determination of the Region Border Prior to the Limit Steady Modes of Electric Power Systems by the Analysis Method of the Tropical Geometry of the Power Balance Equations. Autom Remote Control 85, 68–78 (2024). https://doi.org/10.1134/S0005117924010028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117924010028

Keywords: