Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum levitation of nanoparticles seen with ultracold neutrons

  • Surface and Thin Films
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Analyzing new experiments with ultracold neutrons (UCNs) we show that physical adsorption of nanoparticles/nanodroplets, levitating in high-excited states in a deep and broad potential well formed by van der Waals/Casimir-Polder (vdW/CP) forces results in new effects on a cross-road of the fields of fundamental interactions, neutron, surface and nanoparticle physics. Accounting for the interaction of UCNs with nanoparticles explains a recently discovered intriguing so-called “small heating” of UCNs in traps. It might be relevant to the striking conflict of the neutron lifetime experiments with smallest reported uncertainties by adding false effects there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Oura, V. G. Lifshits, and A. A. Saranin, Surface Science: An Introduction (Bergin-Verlag, Berlin, 2003).

    Book  Google Scholar 

  2. K. W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience (Wiley, Chichester, West Sussex, 2008).

    Google Scholar 

  3. G. Antczak and G. Ehrlich, Surf. Sci. Rep. 62, 39 (2003).

    Article  ADS  Google Scholar 

  4. E. Shustorovich, Metal-Surface Reaction Energetics: Theory and Applications to Heterogeneous Analysis, Chemisorption, and Surface Diffusion (VCN, 1991).

    Google Scholar 

  5. P. G. van Zwol et al., Phys. Rev. B 80, 235401 (2009).

    Article  ADS  Google Scholar 

  6. W. Broer et al., Eur. Phys. Lett. 95, 30001 (2011).

    Article  ADS  Google Scholar 

  7. V. I. Luschikov, Yu. N. Pokotilovsky, A. V. Strelkov, and F. L. Shapiro, JETP Lett. 9, 23 (1969).

    ADS  Google Scholar 

  8. V. K. Ignatovich, The Physics of Ultracold Neutrons (Clarendon, Oxford, 1990).

    Google Scholar 

  9. R. Golub, D. J. Richardson, and S. K. Lamoreux, Ultra-Cold Neutrons (Higler, Bristol, 1991).

    Google Scholar 

  10. V. V. Nesvizhevsky, A. Yu. Voronin, A. Lambrecht, and S. Reynaud, New J. Phys. 14, 093053 (2012).

    Article  ADS  Google Scholar 

  11. V. V. Nesvizhevsky, Phys. At. Nucl. 65, 400 (2002).

    Article  Google Scholar 

  12. A. Canaguier-Durand et al., Phys. Rev. Lett. 102, 230404 (2009).

    Article  ADS  Google Scholar 

  13. A. Canaguier-Durand et al., Phys. Rev. A 83, 032508 (2011).

    Article  ADS  Google Scholar 

  14. V. V. Nesvizhevsky et al., Eur. J. Appl. Phys. 6, 151 (1999).

    Article  ADS  Google Scholar 

  15. A. V. Strelkov et al., Nucl. Instrum. Methods Phys. Res., Sect. A 440, 695 (2000).

    Article  ADS  Google Scholar 

  16. L. Bondarenko et al., JETP Lett. 68, 691 (1998).

    Article  ADS  Google Scholar 

  17. E. V. Lychagin et al., Phys. At. Nucl. 65, 1995 (2002).

    Article  Google Scholar 

  18. D. G. Kartashov et al., Int. J. Nanoscience. 6, 501 (2007).

    Article  ADS  Google Scholar 

  19. S. K. Lamoreaux and R. Golub, Phys. Rev. C 66, 044309 (2002).

    Article  ADS  Google Scholar 

  20. A. L. Barabanov and S. T. Belyaev, Eur. Phys. J. B 15, 59 (2000).

    Article  ADS  Google Scholar 

  21. A. Stepaniants et al., J. Low Temp. Phys. 113, 1159 (1999).

    Article  ADS  Google Scholar 

  22. S. S. Malik et al., Phys. Lett. A 260, 328 (1999).

    Article  ADS  Google Scholar 

  23. Y. N. Pokotilovki, Eur. Phys. J. B 8, (1999) 1; Phys. Lett. A 255, 173 (1999); JETP Lett. 69, 91 (1999).

    Article  ADS  Google Scholar 

  24. S. Arzumanov et al., Phys. Lett. B 483, 15 (2000).

    Article  ADS  Google Scholar 

  25. A. P. Serebrov et al., Phys. Lett. B 605, 72 (2005).

    Article  ADS  Google Scholar 

  26. A. Pichlmaier et al., Phys. Lett. B 693, 221 (2010).

    Article  ADS  Google Scholar 

  27. H. Abele et al., Phys. Rev. Lett. 88, 211801 (2002).

    Article  ADS  Google Scholar 

  28. D. Dubbers and M. G. Schmidt, Rev. Mod. Phys. 83, 1111 (2011).

    Article  ADS  Google Scholar 

  29. G. J. Mathews et al., Phys. Rev. D 71, 021302 (2005).

    Article  ADS  Google Scholar 

  30. S. Paul, Nucl. Instrum. Methods Phys. Res. 611, 157 (2009).

    Article  ADS  Google Scholar 

  31. K. Koga et al., J. Chem. Phys. 109, 4063 (1998).

    Article  ADS  Google Scholar 

  32. T. Tadros et al., Adv. Col. Interface Sci. 108, 108 (2004).

    Google Scholar 

  33. V. K. Ignatovich, Nucl. Instrum. Methods Phys. Res., Sect. A 440, 709 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Nesvizhevsky.

Additional information

Published in Russian in Kristallografiya, 2013, Vol. 58, No. 5, pp. 730–736.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesvizhevsky, V.V., Voronin, A.Y., Lambrecht, A. et al. Quantum levitation of nanoparticles seen with ultracold neutrons. Crystallogr. Rep. 58, 743–748 (2013). https://doi.org/10.1134/S1063774513050088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774513050088

Keywords