Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Spin symmetry in Dirac negative-energy spectrum in density-dependent relativistic Hartree-Fock theory

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The spin symmetry in the Dirac negative-energy spectrum and its origin are investigated for the first time within the density-dependent relativistic Hartree-Fock (DDRHF) theory. Taking the nucleus 16O as an example, the spin symmetry in the negative-energy spectrum is found to be a good approximation and the dominant components of the Dirac wave functions for the spin doublets are nearly identical. In comparison with the relativistic Hartree approximation where the origin of spin symmetry lies in the equality of the scalar and vector potentials, in DDRHF the cancellation between the Hartree and Fock terms is responsible for the better spin symmetry properties and determines the subtle spin-orbit splitting. These conclusions hold even in the case when significant deviations from the G -parity values of the meson-antinucleon couplings occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)

    Google Scholar 

  2. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996)

    Article  ADS  Google Scholar 

  3. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005)

    Article  ADS  Google Scholar 

  4. J. Meng, H. Toki, S.G. Zhou, S.Q. Zhang, W.H. Long, L.S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006)

    Article  ADS  Google Scholar 

  5. A. Arima, M. Harvey, K. Shimizu, Phys. Lett. B 30, 517 (1969)

    Article  ADS  Google Scholar 

  6. K. Hecht, A. Adler, Nucl. Phys. A 137, 129 (1969)

    Article  ADS  Google Scholar 

  7. A. Bohr, I. Hamamoto, B.R. Mottelson, Phys. Scr. 26, 273 (1982)

    Article  ADS  Google Scholar 

  8. C. Bahri, J.P. Draayer, S.A. Moszkowski, Phys. Rev. Lett. 68, 2133 (1992)

    Article  ADS  Google Scholar 

  9. J.N. Ginocchio, Phys. Rep. 414, 165 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, A. Arima, Phys. Rev. C 58, R628 (1998)

    Article  ADS  Google Scholar 

  11. J. Meng, K. Sugawara-Tanabe, S. Yamaji, A. Arima, Phys. Rev. C 59, 154 (1999)

    Article  ADS  Google Scholar 

  12. S. Marcos, L.N. Savushkin, M. López-Quelle, P. Ring, Phys. Rev. C 62, 054309 (2000)

    Article  ADS  Google Scholar 

  13. S. Marcos, M. López-Quelle, R. Niembro, L.N. Savushkin, P. Bernardos, Phys. Lett. B 513, 30 (2001)

    Article  ADS  Google Scholar 

  14. T.S. Chen, H.-F. Lü, J. Meng, S.Q. Zhang, S.-G. Zhou, Chin. Phys. Lett. 20, 358 (2003)

    Article  ADS  Google Scholar 

  15. S.-G. Zhou, J. Meng, P. Ring, Phys. Rev. Lett. 91, 262501 (2003)

    Article  ADS  Google Scholar 

  16. X.T. He, S.-G. Zhou, J. Meng, E.G. Zhao, W. Scheid, Eur. Phys. J. A 28, 265 (2006)

    Article  ADS  Google Scholar 

  17. A. Bouyssy, S. Marcos, J.F. Mathiot, N. Van Giai, Phys. Rev. Lett. 55, 1731 (1985)

    Article  ADS  Google Scholar 

  18. A. Bouyssy, J.F. Mathiot, N. Van Giai, S. Marcos, Phys. Rev. C 36, 380 (1987)

    Article  ADS  Google Scholar 

  19. P. Bernardos et al., Phys. Rev. C 48, 2665 (1993)

    Article  ADS  Google Scholar 

  20. S. Marcos, L.N. Savushkin, V.N. Fomenko, M. López-Quelle, R. Niembro, J. Phys. G: Nucl. Part. Phys. 30, 703 (2004)

    Article  ADS  Google Scholar 

  21. W.H. Long, N. Van Giai, J. Meng, Phys. Lett. B 640, 150 (2006)

    ADS  Google Scholar 

  22. W.H. Long, H. Sagawa, J. Meng, N. Van Giai, EPL 82, 12001 (2008)

    Article  Google Scholar 

  23. W.H. Long, H. Sagawa, N. Van Giai, J. Meng, Phys. Rev. C 76, 034314 (2007)

    Article  ADS  Google Scholar 

  24. M. López-Quelle, L.N. Savushkin, S. Marcos, P. Bernardos, R. Niembro, Nucl. Phys. A 727, 269 (2003)

    Article  ADS  Google Scholar 

  25. W.H. Long, H. Sagawa, J. Meng, N. Van Giai, Phys. Lett. B 639, 242 (2006)

    Article  ADS  Google Scholar 

  26. A. Leviatan, J.N. Ginocchio, Phys. Lett. B 518, 214 (2001)

    Article  ADS  Google Scholar 

  27. J. Meng, Nucl. Phys. A 635, 3 (1998)

    Article  ADS  Google Scholar 

  28. I.N. Mishustin, L.M. Satarov, T.J. Bürvenich, H. Stöcker, W. Greiner, Phys. Rev. C 71, 035201 (2005)

    Article  ADS  Google Scholar 

  29. E. Friedman, A. Gal, J. Mareš, Nucl. Phys. A 761, 283 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Meng.

Additional information

Communicated by W. Nazarewicz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, H., Hui Long, W., Meng, J. et al. Spin symmetry in Dirac negative-energy spectrum in density-dependent relativistic Hartree-Fock theory. Eur. Phys. J. A 44, 119–124 (2010). https://doi.org/10.1140/epja/i2010-10938-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2010-10938-6

Keywords