Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A new approach to monitor \(^{13}\hbox {C}\)-targets degradation in situ for \(^{13}\hbox {C}(\alpha ,\hbox {n})^{16}\hbox {O}\) cross-section measurements at LUNA

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Direct measurements of reaction cross-sections at astrophysical energies often require the use of solid targets able to withstand high ion beam currents for extended periods of time. Thus, monitoring target thickness, isotopic composition, and target stoichiometry during data taking is critical to account for possible target modifications and to reduce uncertainties in the final cross-section results. A common technique used for these purposes is the Nuclear Resonant Reaction Analysis (NRRA), which however requires that a narrow resonance be available inside the dynamic range of the accelerator used. In cases when this is not possible, as for example the \(^{13}\hbox {C}(\alpha ,\hbox {n})^{16}\hbox {O}\) reaction recently studied at low energies at the Laboratory for Underground Nuclear Astrophysics (LUNA) in Italy, alternative approaches must be found. Here, we present a new application of the shape analysis of primary \(\gamma \) rays emitted by the \(^{13}\hbox {C}(\hbox {p},\gamma )^{14}\hbox {N}\) radiative capture reaction. This approach was used to monitor \(^{13}\hbox {C}\) target degradation in situ during the \(^{13}\hbox {C}(\alpha ,\hbox {n})^{16}\hbox {O}\) data taking campaign. The results obtained are in agreement with evaluations subsequently performed at Atomki (Hungary) using the NRRA method. A preliminary application for the extraction of the \(^{13}\hbox {C}(\alpha ,\hbox {n})^{16}\hbox {O}\) reaction cross-section at one beam energy is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the relevant data are included in the presented manuscript or in the references. Additional data not directly displayed in this manuscript are available upon reasonable request to the corresponding author.]

Notes

  1. A narrow resonance is defined as one whose total width \(\varGamma \) is much smaller that the target thickness \(\varDelta E\) in energy units. The latter represents the energy lost by the ion beam in going through the target and depends on the initial beam energy as well as on the target composition and physical thickness.

  2. For targets consisting of chemical compounds, active nuclei are defined as those of a given species that take part in the nuclear reaction under study. All other nuclear species present in the target do not contribute to the reaction yield and are regarded as inactive.

  3. For the present work a target composed of \(^{13}\hbox {C}\) and Ta was assumed (see Sect. 2.1) and further corrections to Bragg’s rule, typically required for carbon compounds with O and H, can safely be neglected.

  4. Indeed, as the cross-section of \(^{13}\hbox {C}(\alpha ,\hbox {n})^{16}\hbox {O}\) reaction drops exponentially with energy, the outermost layers of the target gives the main contribution to the reaction yield. Thus, only the stoichiometric ratio of layer I are of interest here.

References

  1. A. Jesus, B. Braizinha, J. Cruz, J. Ribeiro, Nucl. Instrum. Methods Phys. Res., Sect. B 174, 229 (2001)

    Article  ADS  Google Scholar 

  2. J. Cruz, M. Fonseca, H. Luis, R. Mateus, H. Marques, A.P. Jesus, J.P. Ribeiro, O.M.N.D. Teodoro, C. Rolfs, Nucl. Instrum. Methods Phys. Res. B 267, 478 (2009)

    Article  ADS  Google Scholar 

  3. H. Silva, J. Cruz, A. Sánchez-Benítez, C. Santos, H. Luís, M. Fonseca, A. Jesus, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 135 (2017)

    Article  ADS  Google Scholar 

  4. A. Caciolli, D.A. Scott, A. Di Leva, A. Formicola, M. Aliotta, M. Anders, A. Bellini, D. Bemmerer, C. Broggini, M. Campeggio et al., Eur. Phys. J. A 48, 144 (2012)

    Article  ADS  Google Scholar 

  5. B. Paine, R. Averback, Nucl. Instrum. Methods Phys. Res., Sect. B 7–8, 666 (1985)

    Article  ADS  Google Scholar 

  6. M. Radek, B. Liedke, B. Schmidt, M. Voelskow, L. Bischoff, J. Hansen, A. Larsen, D. Bougeard, R. Böttger, S. Prucnal et al., Materials 10, 813 (2017)

    Article  ADS  Google Scholar 

  7. Z. Wang, Nucl. Instrum. Methods Phys. Res., Sect. B 2, 784 (1984)

    Article  Google Scholar 

  8. J. Tesmer, M. Nastasi, Handbook of modern ion beam materials analysis, Mrs Symposium Proceedings Series (Materials Research Society, 1995), ISBN 9781558992542

  9. V. McGlone, P. Johnson, Nucl. Instrum. Methods Phys. Res., Sect. B 61, 201 (1991)

    Article  ADS  Google Scholar 

  10. S. Cristallo, M.L. Cognata, C. Massimi, A. Best, S. Palmerini, O. Straniero, O. Trippella, M. Busso, G.F. Ciani, F. Mingrone et al., Astrophys J 859, 105 (2018)

    Article  ADS  Google Scholar 

  11. A. Formicola, G. Imbriani, M. Junker, D. Bemmerer, R. Bonetti, C. Broggini, C. Casella, P. Corvisiero, H. Costantini, G. Gervino et al., Nucl. Instrum. Methods Phys. Res., Sect. A 507, 609 (2003)

    Article  ADS  Google Scholar 

  12. C. Broggini, D. Bemmerer, A. Caciolli, D. Trezzi, Prog. Part. Nucl. Phys. 98, 55 (2018)

    Article  ADS  Google Scholar 

  13. G. Imbriani, H. Costantini, A. Formicola, A. Vomiero, C. Angulo, D. Bemmerer, R. Bonetti, C. Broggini, F. Confortola, P. Corvisiero et al., Eur. Phys. J. A Hadrons Nuclei 25, 455 (2005)

    Article  ADS  Google Scholar 

  14. A. Caciolli, C. Mazzocchi, V. Capogrosso, D. Bemmerer, C. Broggini, P. Corvisiero, H. Costantini, Z. Elekes, A. Formicola, Zs Fülöp, Astron. Astrophys. 533, A66 (2011)

    Article  Google Scholar 

  15. C.G. Bruno, D.A. Scott, M. Aliotta, A. Formicola, A. Best, A. Boeltzig, D. Bemmerer, C. Broggini, A. Caciolli, F. Cavanna et al., (LUNA Collaboration), Phys. Rev. Lett. 117, 142502 (2016)

  16. G.C. Bruno, M. Aliotta, P. Descouvemont, A. Best, T. Davinson, D. Bemmerer, A. Boeltzig, C. Broggini, A. Caciolli, F. Cavanna et al., Phys. Lett. B 790, 237 (2019)

    Article  ADS  Google Scholar 

  17. A. Boeltzig, A. Best, F. Pantaleo, G. Imbriani, M. Junker, M. Aliotta, J. Balibrea-Correa, D. Bemmerer, C. Broggini, C. Bruno et al., Phys. Lett. B 795, 122 (2019)

    Article  ADS  Google Scholar 

  18. C. Rolfs, W. Rodney, Cauldrons in the cosmos: nuclear astrophysics, theoretical astrophysics (University of Chicago Press, Chicago, 1988)

    Google Scholar 

  19. C. Iliadis, Nuclear physics of stars (Wiley, Hoboken, 2008)

    Google Scholar 

  20. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM, the stopping and range of ions in matter (SRIM Co., 2008), ISBN 096542071. http://www.srim.org/

  21. D. Vermilyea, Acta Metall. 1, 282 (1953)

    Article  Google Scholar 

  22. D.E. Wolfe, J. Singh, Surf. Coat. Technol. 124, 142 (2000)

    Article  Google Scholar 

  23. I. Rajta, I. Vajda, G. Gyürky, L. Csedreki, Á.Z. Kiss, S. Biri, H.A.P. van Oosterhout, N.C. Podaru, D.J.W. Mous, Nucl. Instrum. Methods Phys. Res., Sect. A 880, 125 (2018)

    Article  ADS  Google Scholar 

  24. F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991)

    Article  ADS  Google Scholar 

  25. D. Rochman, A.J. Koning, JCh. Sublet, M. Fleming, E. Bauge, S. Hilaire, P. Romain, B. Morillon, H. Duarte, S. Goriely et al., EPJ Web Conf. 146, 02006 (2017)

    Article  Google Scholar 

  26. G.F. Ciani, A. Best, L. Csedreki, Gy Gyürky, I. Kochanek, Eur. Phys. J. Web Conf. 165, 01012 (2017)

    Article  Google Scholar 

  27. G. Ciani, Ph.D. thesis, Gran Sasso Science Institute and SISSA (2019)

  28. D. Bemmerer, F. Cavanna, R. Depalo, M. Aliotta, M. Anders, A. Boeltzig, C. Broggini, C. Bruno, A. Caciolli, T. Chillery et al., Europhys. Lett. 122, 52001 (2018)

    Article  ADS  Google Scholar 

  29. J. Ziegler, J. Manoyan, Nucl. Instrum. Methods Phys. Res., Sect. B 35, 215 (1988)

    Article  ADS  Google Scholar 

  30. P.J. LeBlanc, G. Imbriani, J. Görres, M. Junker, R. Azuma, M. Beard, D. Bemmerer, A. Best, C. Broggini, A. Caciolli et al., Phys. Rev. C 82, 055804 (2010)

    Article  ADS  Google Scholar 

  31. D.A. Scott, A. Caciolli, A. Di Leva, A. Formicola, M. Aliotta, M. Anders, D. Bemmerer, C. Broggini, M. Campeggio, P. Corvisiero et al., (LUNA Collaboration), Phys. Rev. Lett. 109, 202501 (2012)

  32. A. Di Leva, D.A. Scott, A. Caciolli, A. Formicola, F. Strieder, M. Aliotta, M. Anders, D. Bemmerer, C. Broggini, P. Corvisiero et al., Phys. Rev. C 89, 015803 (2014)

    Article  ADS  Google Scholar 

  33. L. Csedreki, G.F. Ciani, I. Kochanek, A. Best, Eur. Phys. J. Web Conf. 165, 01017 (2017)

    Article  Google Scholar 

  34. J. King, R. Azuma, J. Vise, J. Görres, C. Rolfs, H. Trautvetter, A. Vlieks, Nucl. Phys. A 567, 354 (1994)

    Article  ADS  Google Scholar 

  35. G. Genard, P. Descouvemont, G. Terwagne, J. Phys: Conf. Ser. 202, 012015 (2010)

    Google Scholar 

  36. J. Julin, F. Munnik, Private Communication (2019)

  37. M. Tanabashi, K. Hagiwara, K. Hikasa, K. Nakamura, Y. Sumino, F. Takahashi, J. Tanaka, K. Agashe, G. Aielli, C. Amsler et al., (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

Download references

Acknowledgements

The authors would like to thank Donatello Ciccotti and the LNGS and INFN Naples mechanical workshops for technical support. The authors are grateful to Jaakko Julin and Frans Munnik for ERDA measurements at the Ion Beam Center of Helmholtz-Zentrum Dresden Rossendorf (HZDR). Support from the National Research, Development and Innovation Office NKFIH (contract numbers PD 129060 and K120666) is also acknowledged, as well as funding from STFC (ST/P004008/1), DFG (BE 4100/4-1), HGF (ERC-RA-0016) and the grant STAR from the University of Naples/Compagnia di San Paolo. This work is supported by “ChETEC” COST Action (CA16117).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. F. Ciani or L. Csedreki.

Additional information

Communicated by Alexandre Obertelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciani, G.F., Csedreki, L., Balibrea-Correa, J. et al. A new approach to monitor \(^{13}\hbox {C}\)-targets degradation in situ for \(^{13}\hbox {C}(\alpha ,\hbox {n})^{16}\hbox {O}\) cross-section measurements at LUNA. Eur. Phys. J. A 56, 75 (2020). https://doi.org/10.1140/epja/s10050-020-00077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00077-0