Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An experimental program with high duty-cycle polarized and unpolarized positron beams at Jefferson Lab

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Positron beams, both polarized and unpolarized, are identified as important ingredients for the experimental programs at the next generation of lepton accelerators. In the context of the hadronic physics program at Jefferson Lab (JLab), positron beams are complementary, even essential, tools for a precise understanding of the electromagnetic structure of nucleons and nuclei, in both the elastic and deep-inelastic regimes. For instance, elastic scattering of polarized and unpolarized electrons and positrons from the nucleon enables a model independent determination of its electromagnetic form factors. Also, the deeply-virtual scattering of polarized and unpolarized electrons and positrons allows unambiguous separation of the different contributions to the cross section of the lepto-production of photons and of lepton-pairs, enabling an accurate determination of the nucleons and nuclei generalized parton distributions, and providing an access to the gravitational form factors of the energy-momentum tensor. Furthermore, positron beams offer the possibility of alternative tests of the Standard Model of particle physics through the search of a dark photon, the precise measurement of electroweak couplings, and the investigation of charged lepton flavor violation. This document discusses the perspectives of an experimental program with high duty-cycle positron beams at JLab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The discussion presented in this article develops from already existing and published data which are duly referenced.]

References

  1. (Jefferson Lab Hall A Collaboration) M.K. Jones, et al., Phys. Rev. Lett. 84, 1398 (2000). https://doi.org/10.1103/PhysRevLett.84.1398

  2. (Jefferson Lab Hall A Collaboration) O. Gayou, et al., Phys. Rev. Lett. 88, 092301 (2002). https://doi.org/10.1103/PhysRevLett.88.092301

  3. A.J.R. Puckett et al., Phys. Rev. Lett. 104, 242301 (2010). https://doi.org/10.1103/PhysRevLett.104.242301

    Article  ADS  Google Scholar 

  4. V. Punjabi, C.F. Perdrisat, M.K. Jones, E.J. Brash, C.E. Carlson, Eur. Phys. J. A 51, 79 (2015). https://doi.org/10.1140/epja/i2015-15079-x

    Article  ADS  Google Scholar 

  5. (CLAS Collaboration) S. Stepanyan, et al., Phys. Rev. Lett. 87, 182002 (2001). https://doi.org/10.1103/PhysRevLett.87.182002

  6. D. Müller, D. Robaschik, B. Geyer, F.M. Dittes, J. Hořejši, Fortsch. Phys. 42, 101 (1994). https://doi.org/10.1002/prop.2190420202

    Article  ADS  Google Scholar 

  7. X.D. Ji, Phys. Rev. Lett. 78, 610 (1997). https://doi.org/10.1103/PhysRevLett.78.610

    Article  ADS  Google Scholar 

  8. X.D. Ji, Phys. Rev. D 55, 7114 (1997). https://doi.org/10.1103/PhysRevD.55.7114

    Article  ADS  Google Scholar 

  9. A.V. Radyushkin, Phys. Rev. D 56, 5524 (1997). https://doi.org/10.1103/PhysRevD.56.5524

    Article  ADS  Google Scholar 

  10. (G0 Collaboration) D.S. Armstrong, et al., Phys. Rev. Lett. 95, 092001 (2005). https://doi.org/10.1103/PhysRevLett.95.092001

  11. (HAPPEX Collaboration) K.A. Aniol, et al., Phys. Rev. Lett. 96, 022003 (2006). https://doi.org/10.1103/PhysRevLett.96.022003

  12. (HAPPEX Collaboration) K.A. Aniol, et al., Phys. Lett. B 635, 275 (2006). https://doi.org/10.1016/j.physletb.2006.03.011

  13. (HAPPEX Collaboration) A. Acha, et al., Phys. Rev. Lett. 98, 032301 (2007). https://doi.org/10.1103/PhysRevLett.98.032301

  14. (G0 Collaboration) D. Androić, et al., Phys. Rev. Lett. 104, 012001 (2010). https://doi.org/10.1103/PhysRevLett.104.012001

  15. (G0 Collaboration) D. Androić, et al., Phys. Rev. Lett. 107, 022501 (2011). https://doi.org/10.1103/PhysRevLett.107.022501

  16. (G0 Collaboration) D. Androić, et al., Phys. Rev. Lett. 108, 122002 (2012). https://doi.org/10.1103/PhysRevLett.108.122002

  17. (\(Q_{weak}\) Collaboration) D. Androić, et al., Phys. Rev. Lett. 111, 141803 (2013). https://doi.org/10.1103/PhysRevLett.111.141803

  18. (\(Q_{weak}\) Collaboration) D. Androić, et al., Nature 557, 207 (2018). https://doi.org/10.1038/s41586-018-0096-0

  19. (Jefferson Lab PVDIS Collaboration) D. Wang, et al., Nature 506, 67 (2014). https://doi.org/10.1038/nature12964

  20. R.D. Young, J. Roche, R.D. Carlini, A.W. Thomas, Phys. Rev. Lett. 97, 102002 (2006). https://doi.org/10.1103/PhysRevLett.97.102002

  21. E. Voutier, Nucl. Theor. 33, 142 (2014)

    Google Scholar 

  22. P.A. Guichon, M. Vanderhaeghen, Phys. Rev. Lett. 91, 142303 (2003). https://doi.org/10.1103/PhysRevLett.91.142303

  23. P. Blunden, W. Melnitchouk, J. Tjon, Phys. Rev. Lett. 91, 142304 (2003). https://doi.org/10.1103/PhysRevLett.91.142304

  24. X. Zheng, J. Erler, Q. Liu, H. Spiesberger, Eur. Phys. J. A 57, 173 (2021). https://doi.org/10.1140/epja/s10050-021-00490-z

    Article  ADS  Google Scholar 

  25. Y. Furletova, S. Mantry, Contribution to this Topical Issue (2021)

  26. B. Wojtsekhowski, AIP. Conf. Proc. 1160, 149 (2009). https://doi.org/10.1063/1.3232023

    Article  ADS  Google Scholar 

  27. L. Marsicano, AIP Conf. Proc. 1970, 020008 (2018). https://doi.org/10.1063/1.5040202

  28. M. Battaglieri, et al., arXiv:2105.04540 (2021)

  29. P. Adderley et al., Phys. Rev. ST Accel. Beams 13, 010101 (2010). https://doi.org/10.1103/PhysRevSTAB.13.010101

    Article  ADS  Google Scholar 

  30. (PEPPo Collaboration) D. Abott, et al., Phys. Rev. Lett. 116, 214801 (2016). https://doi.org/10.1103/PhysRevLett.116.214801

  31. H. Olsen, L. Maximon, Phys. Rev. 114, 887 (1959). https://doi.org/10.1103/PhysRev.114.887

    Article  ADS  MathSciNet  Google Scholar 

  32. E. Kuraev, Y. Bystritskiy, M. Shatnev, E. Tomasi-Gustafsson, Phys. Rev. C 81, 055208 (2010). https://doi.org/10.1103/PhysRevC.81.055208

    Article  ADS  Google Scholar 

  33. A. Sokolov, I.M. Ternov, Sov. Phys. Dokl. 8, 1203 (1964)

    ADS  Google Scholar 

  34. T. Omori et al., Phys. Rev. Lett. 96, 114801 (2006). https://doi.org/10.1103/PhysRevLett.96.114801

    Article  ADS  Google Scholar 

  35. G. Alexander et al., Phys. Rev. Lett. 100, 210801 (2008). https://doi.org/10.1103/PhysRevLett.100.210801

    Article  ADS  Google Scholar 

  36. A. Afanasev, P.G. Blunden, D. Hasell, B.A. Raue, Prog. Part. Nucl. Phys. 95, 245 (2017). https://doi.org/10.1016/j.ppnp.2017.03.004

    Article  ADS  Google Scholar 

  37. (Jefferson Lab Hall A Collaboration) O. Gayou, et al., Phys. Rev. C 64, 038202 (2001). https://doi.org/10.1103/PhysRevC.64.038202

  38. (Jefferson Lab Hall A Collaboration) V. Punjabi, et al., Phys. Rev. C 71, 055202 (2005). https://doi.org/10.1103/PhysRevC.71.055202. https://doi.org/10.1103/PhysRevC.71.069902. [Erratum: Phys. Rev.C71,069902(2005)]

  39. (E03–104 Collaboration) M. Paolone, et al., Phys. Rev. Lett. 105, 072001 (2010). https://doi.org/10.1103/PhysRevLett.105.072001

  40. X. Zhan et al., Phys. Lett. B 705, 59 (2011). https://doi.org/10.1016/j.physletb.2011.10.002

    Article  ADS  Google Scholar 

  41. (Jefferson Lab Hall A Collaboration) A.J.R. Puckett, et al., Phys. Rev. C 85, 045203 (2012). https://doi.org/10.1103/PhysRevC.85.045203

  42. A.J.R. Puckett et al., Phys. Rev. C 96, 055203 (2017). https://doi.org/10.1103/PhysRevC.96.055203

    Article  ADS  Google Scholar 

  43. B. Hu et al., Phys. Rev. C 73, 064004 (2006). https://doi.org/10.1103/PhysRevC.73.064004

    Article  ADS  Google Scholar 

  44. (Resonance Spin Structure Collaboration) M.K. Jones et al., Phys. Rev. C 74, 035201 (2006). https://doi.org/10.1103/PhysRevC.74.035201

  45. G. MacLachlan et al., Nucl. Phys. A 764, 261 (2006). https://doi.org/10.1016/j.nuclphysa.2005.09.012

    Article  ADS  Google Scholar 

  46. (Jefferson Lab Hall A Collaboration) G. Ron, et al., Phys. Rev. C 84, 055204 (2011). https://doi.org/10.1103/PhysRevC.84.055204

  47. (Bates FPP Collaboration) B.D. Milbrath, et al., Phys. Rev. Lett. 80, 452 (1998). https://doi.org/10.1103/PhysRevLett.80.452, https://doi.org/10.1103/PhysRevLett.82.2221. [Erratum: Phys. Rev. Lett.82,2221(1999)]

  48. (A1 Collaboration) T. Pospischil, et al., Eur. Phys. J. A 12, 125 (2001). https://doi.org/10.1007/s100500170046

  49. C.B. Crawford et al., Phys. Rev. Lett. 98, 052301 (2007). https://doi.org/10.1103/PhysRevLett.98.052301

    Article  ADS  Google Scholar 

  50. J. Litt et al., Phys. Lett. B 31, 40 (1970). https://doi.org/10.1016/0370-2693(70)90015-8

    Article  ADS  Google Scholar 

  51. W. Bartel et al., Nucl. Phys. B 58, 429 (1973). https://doi.org/10.1016/0550-3213(73)90594-4

    Article  ADS  Google Scholar 

  52. L. Andivahis et al., Phys. Rev. D 50, 5491 (1994). https://doi.org/10.1103/PhysRevD.50.5491

    Article  ADS  Google Scholar 

  53. R.C. Walker et al., Phys. Rev. D 49, 5671 (1994). https://doi.org/10.1103/PhysRevD.49.5671

    Article  ADS  Google Scholar 

  54. M.E. Christy et al., Phys. Rev. C 70, 015206 (2004). https://doi.org/10.1103/PhysRevC.70.015206

    Article  ADS  Google Scholar 

  55. I.A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005). https://doi.org/10.1103/PhysRevLett.94.142301

    Article  ADS  Google Scholar 

  56. T. Janssens, R. Hofstadter, E.B. Hughes, M.R. Yearian, Phys. Rev. 142, 922 (1966). https://doi.org/10.1103/PhysRev.142.922

    Article  ADS  Google Scholar 

  57. C. Berger, V. Burkert, G. Knop, B. Langenbeck, K. Rith, Phys. Lett. B 35, 87 (1971). https://doi.org/10.1016/0370-2693(71)90448-5

    Article  ADS  Google Scholar 

  58. L.W. Mo, Y.S. Tsai, Rev. Mod. Phys. 41, 205 (1969). https://doi.org/10.1103/RevModPhys.41.205

    Article  ADS  Google Scholar 

  59. L.C. Maximon, J.A. Tjon, Phys. Rev. C 62, 054320 (2000). https://doi.org/10.1103/PhysRevC.62.054320

    Article  ADS  Google Scholar 

  60. T. Liu, W. Melnitchouk, J.W. Qiu, N. Sato, arXiv:2008.02895 (2020)

  61. (A1 Collaboration) J.C. Bernauer, et al., Phys. Rev. C 90, 015206 (2014). https://doi.org/10.1103/PhysRevC.90.015206

  62. P.G. Blunden, W. Melnitchouk, A.W. Thomas, Phys. Rev. Lett. 109, 262301 (2012). https://doi.org/10.1103/PhysRevLett.109.262301

    Article  ADS  Google Scholar 

  63. W.J. Marciano, A. Sirlin, Phys. Rev. Lett. 96, 032002 (2006). https://doi.org/10.1103/PhysRevLett.96.032002

    Article  ADS  Google Scholar 

  64. P. Blunden, W. Melnitchouk, J. Tjon, Phys. Rev. C 72, 034612 (2005). https://doi.org/10.1103/PhysRevC.72.034612

    Article  ADS  Google Scholar 

  65. S. Kondratyuk, P. Blunden, W. Melnitchouk, J. Tjon, Phys. Rev. Lett. 95, 172503 (2005). https://doi.org/10.1103/PhysRevLett.95.172503

    Article  ADS  Google Scholar 

  66. S. Kondratyuk, P. Blunden, Phys. Rev. C 75, 038201 (2007). https://doi.org/10.1103/PhysRevC.75.038201

    Article  ADS  Google Scholar 

  67. M. Gorchtein, Phys. Lett. B 644, 322 (2007). https://doi.org/10.1016/j.physletb.2006.11.065

    Article  ADS  Google Scholar 

  68. D. Borisyuk, A. Kobushkin, Phys. Rev. C 74, 065203 (2006). https://doi.org/10.1103/PhysRevC.74.065203

    Article  ADS  Google Scholar 

  69. D. Borisyuk, A. Kobushkin, Phys. Rev. C 86, 055204 (2012). https://doi.org/10.1103/PhysRevC.86.055204

    Article  ADS  Google Scholar 

  70. D. Borisyuk, A. Kobushkin, Phys. Rev. C 89, 025204 (2014). https://doi.org/10.1103/PhysRevC.89.025204

    Article  ADS  Google Scholar 

  71. O. Tomalak, M. Vanderhaeghen, Eur. Phys. J. A 51, 24 (2015). https://doi.org/10.1140/epja/i2015-15024-1

    Article  ADS  Google Scholar 

  72. O. Tomalak, B. Pasquini, M. Vanderhaeghen, Phys. Rev. D 95, 096001 (2017). https://doi.org/10.1103/PhysRevD.95.096001

    Article  ADS  Google Scholar 

  73. O. Tomalak, B. Pasquini, M. Vanderhaeghen, Phys. Rev. D 96, 096001 (2017). https://doi.org/10.1103/PhysRevD.96.096001

    Article  ADS  Google Scholar 

  74. P.G. Blunden, W. Melnitchouk, Phys. Rev. C 95, 065209 (2017). https://doi.org/10.1103/PhysRevC.95.065209

    Article  ADS  Google Scholar 

  75. J. Ahmed, P.G. Blunden, W. Melnitchouk, Phys. Rev. C 102, 045205 (2020). https://doi.org/10.1103/PhysRevC.102.045205

    Article  ADS  Google Scholar 

  76. J. Arrington, W. Melnitchouk, J. Tjon, Phys. Rev. C 76, 035205 (2007). https://doi.org/10.1103/PhysRevC.76.035205

    Article  ADS  Google Scholar 

  77. Y. Chen, A. Afanasev, S. Brodsky, C. Carlson, M. Vanderhaeghen, Phys. Rev. Lett. 93, 122301 (2004). https://doi.org/10.1103/PhysRevLett.93.122301

    Article  ADS  Google Scholar 

  78. A.V. Afanasev, S.J. Brodsky, C.E. Carlson, Y.C. Chen, M. Vanderhaeghen, Phys. Rev. D 72, 013008 (2005). https://doi.org/10.1103/PhysRevD.72.013008

    Article  ADS  Google Scholar 

  79. D. Borisyuk, A. Kobushkin, Phys. Rev. D 79, 034001 (2009). https://doi.org/10.1103/PhysRevD.79.034001

    Article  ADS  Google Scholar 

  80. N. Kivel, M. Vanderhaeghen, Phys. Rev. Lett. 103, 092004 (2009). https://doi.org/10.1103/PhysRevLett.103.092004

    Article  ADS  Google Scholar 

  81. I.A. Rachek et al., Phys. Rev. Lett. 114, 062005 (2015). https://doi.org/10.1103/PhysRevLett.114.062005

    Article  ADS  Google Scholar 

  82. (CLAS Collaboration) D. Adikaram, et al., Phys. Rev. Lett. 114, 062003 (2015). https://doi.org/10.1103/PhysRevLett.114.062003

  83. (CLAS Collaboration) D. Rimal, et al., Phys. Rev. C 95, 065201 (2017). https://doi.org/10.1103/PhysRevC.95.065201

  84. (OLYMPUS Collaboration) B.S. Henderson, et al., Phys. Rev. Lett. 118, 092501 (2017). https://doi.org/10.1103/PhysRevLett.118.092501

  85. D. Yount, J. Pine, Phys. Rev. 128, 1842 (1962). https://doi.org/10.1103/PhysRev.128.1842

    Article  ADS  Google Scholar 

  86. A. Browman, F. Liu, C. Schaerf, Phys. Rev. 139, B1079 (1965). https://doi.org/10.1103/PhysRev.139.B1079

    Article  ADS  Google Scholar 

  87. J. Mar, B.C. Barish, J. Pine, D.H. Coward, H.C. DeStaebler, J. Litt, A. Minten, R.E. Taylor, M. Breidenbach, Phys. Rev. Lett. 21, 482 (1968). https://doi.org/10.1103/PhysRevLett.21.482

    Article  ADS  Google Scholar 

  88. C.W. de Jager et al., The Super-Bigbite Spectrometer for Jefferson Lab Hall A (Tech. rep, Jefferson Lab Conceptual Design Report, 2009)

  89. V. Burkert et al., Nucl. Instrum. Methods A 959, 163419 (2020). https://doi.org/10.1016/j.nima.2020.163419

    Article  Google Scholar 

  90. J.C. Bernauer, V.D. Burkert, E. Cline, A. Schmidt, Y. Sharabian, Eur. Phys. J. A 57(4), 144 (2021). https://doi.org/10.1140/epja/s10050-021-00462-3

    Article  ADS  Google Scholar 

  91. E. Cline, J.C. Bernauer, A. Schmidt, arXiv:2103.06301 (2021)

  92. J.R. Arrington, M. Yurov, arXiv:2103.03752 (2021)

  93. A.J.R. Puckett, J.C. Bernauer, A. Schmidt, Eur. Phys. J. A 57, 188 (2021). https://doi.org/10.1140/epja/s10050-021-00509-5

    Article  ADS  Google Scholar 

  94. J. Alcorn et al., Nucl. Instrum. Methods A 522, 294 (2004). https://doi.org/10.1016/j.nima.2003.11.415

    Article  ADS  Google Scholar 

  95. E. Cisbani, M.K. Jones, N. Liyanage, L.P. Pentchev, A.J.R. Puckett, B. Wojtsekhowski et al., Jefferson Lab E12–07-109 (2019)

  96. G.N. Grauvogel, T. Kutz, A. Schmidt, Eur. Phys. J. A 57, 213 (2021). https://doi.org/10.1140/epja/s10050-021-00531-7

    Article  ADS  Google Scholar 

  97. P. Talukdar, V.C. Shastry, U. Raha, F. Myhrer, Phys. Rev. D 101, 013008 (2020). https://doi.org/10.1103/PhysRevD.101.013008

    Article  ADS  Google Scholar 

  98. C.E. Carlson, Prog. Part. Nucl. Phys. 82, 59 (2015). https://doi.org/10.1016/j.ppnp.2015.01.002

    Article  ADS  Google Scholar 

  99. G.A. Miller, Phys. Rev. C 99, 035202 (2019). https://doi.org/10.1103/PhysRevC.99.035202

    Article  ADS  Google Scholar 

  100. S.K. Barcus, D.W. Higinbotham, R.E. McClellan, Phys. Rev. C 102, 015205 (2020). https://doi.org/10.1103/PhysRevC.102.015205

    Article  ADS  Google Scholar 

  101. (MUSE Collaboration) R. Gilman, et al., arXiv:1303.2160 (2013)

  102. (MUSE Collaboration) R. Gilman, et al., arXiv:1709.09753 (2017)

  103. A. Gasparian, et al., arXiv:2009.10510 (2020)

  104. T.J. Hague, et al., arXiv:2102.11449 (2021)

  105. J. Pierce, et al., arXiv:2103.01749 (2021)

  106. D. Borisyuk, A. Kobushkin, Ukr. , J. Phys. 66(3), 10 (2021.15407/ujpe66.1.3.)

  107. T. Kutz, A. Schmidt, arXiv:2104.11779 (2021)

  108. M. Burkardt, Phys. Rev. D 62, 071503 (2000). https://doi.org/10.1103/PhysRevD.62.071503. [Erratum: Phys. Rev. D 66, 119903 (2002)]

  109. M. Diehl, Eur. Phys. J. C 25, 223 (2002). https://doi.org/10.1007/s10052-002-1016-9. [Erratum: Eur. Phys. J. C 31, 277-278 (2003)]

  110. J.C. Collins, L. Frankfurt, M. Strikman, Phys. Rev. D 56, 2982 (1997). https://doi.org/10.1103/PhysRevD.56.2982

    Article  ADS  Google Scholar 

  111. X.D. Ji, J. Osborne, Phys. Rev. D 58, 094018 (1998). https://doi.org/10.1103/PhysRevD.58.094018

    Article  ADS  Google Scholar 

  112. J.C. Collins, A. Freund, Phys. Rev. D 59, 074009 (1999). https://doi.org/10.1103/PhysRevD.59.074009

    Article  ADS  Google Scholar 

  113. X.D. Ji, J. Phys. G 24, 1181 (1998). https://doi.org/10.1088/0954-3899/24/7/002

    Article  ADS  Google Scholar 

  114. K. Goeke, M.V. Polyakov, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47, 401 (2001). https://doi.org/10.1016/S0146-6410(01)00158-2

    Article  ADS  Google Scholar 

  115. M.V. Polyakov, Phys. Lett. B 555, 57 (2003). https://doi.org/10.1016/S0370-2693(03)00036-4

    Article  ADS  Google Scholar 

  116. M.V. Polyakov, P. Schweitzer, Int. J. Mod. Phys. A 33, 1830025 (2018). https://doi.org/10.1142/S0217751X18300259

    Article  ADS  Google Scholar 

  117. V.D. Burkert, L. Elouadrhiri, F.X. Girod, Nature 557, 396 (2018). https://doi.org/10.1038/s41586-018-0060-z

    Article  ADS  Google Scholar 

  118. V.D. Burkert, L. Elouadrhiri, F.X. Girod, arXiv:2104.02031 (2021)

  119. I. Anikin, O. Teryaev, Phys. Rev. D 76, 056007 (2007). https://doi.org/10.1103/PhysRevD.76.056007

    Article  ADS  Google Scholar 

  120. M. Diehl, D.Y. Ivanov, Eur. Phys. J. C 52, 919 (2007). https://doi.org/10.1140/epjc/s10052-007-0401-9

    Article  ADS  Google Scholar 

  121. M. Polyakov, Phys. Lett. B 659, 542 (2008). https://doi.org/10.1016/j.physletb.2007.11.012

    Article  ADS  Google Scholar 

  122. K. Kumerički, Nature 570, E1 (2019). https://doi.org/10.1038/s41586-019-1211-6

    Article  ADS  Google Scholar 

  123. H. Dutrieux, C. Lorcé, H. Moutarde, P. Sznajder, A. Trawiński, J. Wagner, Eur. Phys. J. C 81, 300 (2021). https://doi.org/10.1140/epjc/s10052-021-09069-w

    Article  ADS  Google Scholar 

  124. (HERMES Collaboration) A. Airapetian, et al., Phys. Rev. Lett. 87, 182001 (2001). https://doi.org/10.1103/PhysRevLett.87.182001

  125. (H1 Collaboration) F.D. Aaron, et al., Phys. Lett. B 659, 796 (2008). https://doi.org/10.1016/j.physletb.2007.11.093

  126. (ZEUS Collaboration) S. Chekanov, et al., JHEP 0905, 108 (2009). https://doi.org/10.1088/1126-6708/2009/05/108

  127. (Jefferson Lab Hall A Collaboration) C. Muñoz Camacho et al., Phys. Rev. Lett. 97, 262002 (2006). https://doi.org/10.1103/PhysRevLett.97.262002

  128. (CLAS Collaboration) F.X. Girod, et al., Phys. Rev. Lett. 100, 162002 (2008). https://doi.org/10.1103/PhysRevLett.100.162002

  129. H.S. Jo, PoS QNP2012, 052, (2012). https://doi.org/10.22323/1.157.0052

  130. (CLAS Collaboration) E. Seder, et al., Phys. Rev. Lett. 114, 032001 (2015). https://doi.org/10.1103/PhysRevLett.114.032001

  131. (Jefferson Lab Hall A Collaboration) M. Mazouz, et al., Phys. Rev. Lett. 99, 242501 (2007). https://doi.org/10.1103/PhysRevLett.99.242501

  132. (HERMES Collaboration) A. Airapetian, et al., Phys. Lett. B 704, 15 (2011). https://doi.org/10.1016/j.physletb.2011.08.067

  133. M. Vanderhaeghen, P.A.M. Guichon, M. Guidal, Phys. Rev. D 60, 094017 (1999)

    Article  ADS  Google Scholar 

  134. M. Guidal, M.V. Polyakov, A.V. Radyushkin, M. Vanderhaeghen, Phys. Rev. D 72, 054013 (2005)

    Article  ADS  Google Scholar 

  135. K. Kumericki, D. Mueller, K. Passek-Kumericki, Nucl. Phys. B 794, 244 (2008). https://doi.org/10.1016/j.nuclphysb.2007.10.029

    Article  ADS  Google Scholar 

  136. C. Mezrag, H. Moutarde, F. Sabatié, Phys. Rev. D 88, 014001 (2013). https://doi.org/10.1103/PhysRevD.88.014001

    Article  ADS  Google Scholar 

  137. K. Kumerički, D. Mueller, Int. J. Mod. Phys. Conf. Ser. 40, 1660047 (2016). https://doi.org/10.1142/S2010194516600478

    Article  Google Scholar 

  138. H. Moutarde, P. Sznajder, J. Wagner, Eur. Phys. J. C 79, 614 (2019). https://doi.org/10.1140/epjc/s10052-019-7117-5

    Article  ADS  Google Scholar 

  139. M. Diehl, CLAS12 European Workshop (Genova (Italy), 2009)

  140. M. Guidal, M. Vanderhaeghen, Phys. Rev. Lett. 90, 012001 (2003). https://doi.org/10.1103/PhysRevLett.90.012001

    Article  ADS  Google Scholar 

  141. A.V. Belitsky, D. Müller, Phys. Rev. Lett. 90, 022001 (2003). https://doi.org/10.1103/PhysRevLett.90.022001

    Article  ADS  Google Scholar 

  142. M. Defurne et al., Nat. Commun. 8, 1408 (2017). https://doi.org/10.1038/s41467-017-01819-3

    Article  ADS  Google Scholar 

  143. B. Kriesten, S. Liuti, arXiv:2011.04484 (2020)

  144. A. Afanasev, et al., arXiv:2105.06540 (2021)

  145. T. Horn, C. Hyde, C. Muñoz Camacho, R. Paremuzyan, J. Roche et al., Jefferson Lab E12–13-010 (2013)

  146. V. Burkert, L. Elouadrhiri, F.X. Girod, S. Niccolai, E. Voutier et al., Eur. Phys. J. A 57, 186 (2021). https://doi.org/10.1140/epja/s10050-021-00474-z

    Article  ADS  Google Scholar 

  147. S. Niccolai, P. Chatagnon, M. Hoballah, D. Marchand, C. Munoz Camacho, E. Voutier, Eur. Phys. J. A 57, 226 (2021). https://doi.org/10.1140/epja/s10050-021-00541-5

    Article  ADS  Google Scholar 

  148. W. Armstrong, et al., arXiv:1708.00888 (2017)

  149. S. Fucini, M. Hattawy, M. Rinaldi, S. Scopetta, arXiv:2105.00435 (2021)

  150. S. Zhao, A. Camsonne, D. Marchand, M. Mazouz, N. Sparveris, S. Stepanyan, E. Voutier, Z.W. Zhao, Eur. Phys. J. A 57, 240 (2021). https://doi.org/10.1140/epja/s10050-021-00551-3

    Article  ADS  Google Scholar 

  151. (ATLAS Collaboration) M. Aaboud, et al., Phys. Lett. B 786, 59 (2018). https://doi.org/10.1016/j.physletb.2018.09.013

  152. (CMS Collaboration) A.M. Sirunyan, et al., Phys. Rev. Lett. 121, 121801 (2018). https://doi.org/10.1103/PhysRevLett.121.121801

  153. (LHCb Collaboration) R. Aaij, et al., arXiv:2103.11769 (2021)

  154. (Muon \(g\)-2 Collaboration) B. Abi, et al., Phys. Rev. Lett. 126, 141801 (2021). https://doi.org/10.1103/PhysRevLett.126.141801

  155. (Particle Data Group) P.A. Zyla, et al., PTEP 2020, 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

  156. C.S. Wood, S.C. Bennett, D. Cho, B.P. Masterson, J.L. Roberts, C.E. Tanner, C.E. Wieman, Science 275, 1759 (1997). https://doi.org/10.1126/science.275.5307.1759

    Article  Google Scholar 

  157. J. Guena, M. Lintz, M.A. Bouchiat, Mod. Phys. Lett. A 20, 375 (2005). https://doi.org/10.1142/S0217732305016853

    Article  ADS  Google Scholar 

  158. G. Toh, A. Damitz, C.E. Tanner, W.R. Johnson, D.S. Elliott, Phys. Rev. Lett. 123, 073002 (2019). https://doi.org/10.1103/PhysRevLett.123.073002

    Article  ADS  Google Scholar 

  159. (Jefferson Lab PVDIS Collaboration) D. Wang, et al., Phys. Rev. C 91, 045506 (2015). https://doi.org/10.1103/PhysRevC.91.045506

  160. A. Argento et al., Phys. Lett. B 120, 245 (1983). https://doi.org/10.1016/0370-2693(83)90665-2

    Article  ADS  Google Scholar 

  161. (MEG Collaboration) A.M. Baldini, et al., Eur. Phys. J. C 76, 434 (2016). https://doi.org/10.1140/epjc/s10052-016-4271-x

  162. (H1 Collaboration) F.D. Aaron, et al., Phys. Lett. B 701, 20 (2011). https://doi.org/10.1016/j.physletb.2011.05.023

  163. (ZEUS Collaboration) S. Chekanov, et al., Eur. Phys. J. C 44, 463 (2005). https://doi.org/10.1140/epjc/s2005-02399-1

  164. M. Gonderinger, M.J. Ramsey-Musolf, JHEP 2010(2010). https://doi.org/10.1007/jhep11(2010)045

  165. V. Cirigliano, K. Fuyuto, C. Lee, E. Mereghetti, B. Yan, JHEP 03, 256 (2021). https://doi.org/10.1007/JHEP03(2021)256

    Article  ADS  Google Scholar 

  166. D. Boer, et al., arXiv:1108.1713 (2011)

  167. R. Abdul Khalek, et al., arXiv:2103.05419 (2021)

  168. L. Marsicano, M. Battaglieri, M. Bondí, C.D.R. Carvajal, A. Celentano, M. De Napoli, R. De Vita, E. Nardi, M. Raggi, P. Valente, Phys. Rev. Lett. 121, 041802 (2018). https://doi.org/10.1103/PhysRevLett.121.041802

    Article  ADS  Google Scholar 

  169. L. Marsicano, M. Battaglieri, M. Bondí, C.D.R. Carvajal, A. Celentano, M. De Napoli, R. De Vita, E. Nardi, M. Raggi, P. Valente, Phys. Rev. D 98, 015031 (2018). https://doi.org/10.1103/PhysRevD.98.015031

    Article  ADS  Google Scholar 

  170. E. Nardi, C. Carvajal, A. Ghoshal, D. Meloni, M. Raggi, Phys. Rev. D 97(9), 095004 (2018). https://doi.org/10.1103/PhysRevD.97.095004

    Article  ADS  Google Scholar 

  171. M. Raggi, V. Kozhuharov, Adv. High Energy Phys. 2014, 959802 (2014). https://doi.org/10.1155/2014/959802

    Article  Google Scholar 

  172. A. Sommerfeld, Ann. Physik 11(1931). https://doi.org/10.1002/andp.19314030302

  173. G.C. Wick, Phys. Rev. 81, 467 (1951). https://doi.org/10.1103/PhysRev.81.467.2

    Article  ADS  Google Scholar 

  174. M.M. May, Phys. Rev. 84, 265 (1951). https://doi.org/10.1103/PhysRev.84.265

    Article  ADS  Google Scholar 

  175. (CLAS Collaboration) B.A. Mecking, Nucl. et al., Instrum. Methods A 503, 513 (2003). https://doi.org/10.1016/S0168-9002(03)01001-5

  176. (GlueX Collaboration) S. Adhikari, Nucl. et al., Instrum. Methods A 987, 164807 (2021). https://doi.org/10.1016/j.nima.2020.164807

  177. J. Dumas, J. Grames, E. Voutier, AIP Proc. Conf. 1160, 120 (2009). https://doi.org/10.1063/1.3232018

    Article  ADS  Google Scholar 

  178. M. Schirber, APS Phys. 9, 58 (2016). https://doi.org/10.1103/Physics.9.58

    Article  Google Scholar 

  179. J. Dumas, Feasibility Studies of a Polarized Positron Source Based on the Bremsstrahlung of Polarized Electrons. Ph.D. thesis, Université de Grenoble, Grenoble (France), 2011, p. NNT:2011GRENY03

  180. J. Grames, D. Moser, P. Adderley, J.J. Hansknecht, R. Kazimi, M. Poelker, M. Stutzman, R. Suleiman, S. Zhang, PoS 324(028), 10 (2017.22323/1.324.0014.)

  181. R. Suleiman, P. Adderley, J. Grames, J. Hansknecht, M. Poelker, M. Stutzman, AIP Conf. Proc. 1970, 050007 (2018). https://doi.org/10.1063/1.5040226

  182. L.S. Cardman, AIP Conf. Proc. 1970, 050001 (2018). https://doi.org/10.1063/1.5040220

  183. S. Golge, C.E. Hyde, A. Freyberger, AIP Conf. Proc. 1160, 109 (2009). https://doi.org/10.1063/1.3232016

  184. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  185. R. Dollan, K. Laihem, A. Schalicke, Nucl. Instrum. Methods A 559, 185 (2006). https://doi.org/10.1016/j.nima.2005.11.216

    Article  ADS  Google Scholar 

  186. S. Golge, Feasibility and Conceptual Design of a C.W. Positron Source at CEBAF, Ph.D. thesis (Old Dominion University, Norfolk, VA, 2010). https://doi.org/10.2172/1004757

  187. A. Afanasev, A. Ilyichev, arXiv:2106.11103 (2021)

  188. B. Pasquini, M. Vanderhaeghen, arXiv:2106.05683 (2021)

  189. W. Melnitchouk, J.F. Owens, Contribution to this Topical Issue (2021)

  190. H. Dutrieux, V. Bertone, H. Moutarde, P. Sznajder, arXiv:2105.09245 (2021)

Download references

Acknowledgements

This article is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation program under agreement STRONG - 2020 - No 824093. It is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Voutier.

Additional information

Communicated by Nicolas Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Accardi, A., Afanasev, A., Albayrak, I. et al. An experimental program with high duty-cycle polarized and unpolarized positron beams at Jefferson Lab. Eur. Phys. J. A 57, 261 (2021). https://doi.org/10.1140/epja/s10050-021-00564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00564-y