Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-component static model for social networks

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

The static model was introduced to generate a scale-free network. In the model, N number of vertices are present from the beginning. Each vertex has its own weight, representing how much the vertex is influential in a system. The static model, however, is not relevant, when a complex network is composed of many modules such as communities in social networks. An individual may belong to more than one community and has distinct weights for each community. Thus, we generalize the static model by assigning a q-component weight on each vertex. We first choose a component \((\mu)\) among the q components at random and a pair of vertices is linked with a color μ according to their weights of the component \((\mu)\) as in the static model. A (1-f) fraction of the entire edges is connected following this way. The remaining fraction f is added with (q + 1)-th color as in the static model but using the maximum weights among the q components each individual has. The social activity with such maximum weights is an essential ingredient to enhance the assortativity coefficient as large as the ones of real social networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Strogatz, Nature 410, 268 (2001)

    Article  ADS  Google Scholar 

  2. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  Google Scholar 

  3. S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)

    Article  ADS  Google Scholar 

  4. M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. B.A. Huberman, L.A. Adamic, Nature 401, 131 (1999)

    ADS  Google Scholar 

  7. K.-I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701 (2001)

    Article  ADS  Google Scholar 

  8. For example, E.M. Jin, M. Girvan, M.E.J. Newman Phys. Rev. E 64, 046132 (2001); J. Davidsen, H. Ebel, S. Bornholdt, Phys. Rev. Lett. 88, 128701 (2002); L. López, M.A.F. Sanjuán, Phys. Rev. E 65, 036107 (2002); K. Klemm, V.M. Eguiluz, R. Toral, M.S. Miguel, Phys. Rev. E 67, 026120 (2003); A. Vazquez, Phys. Rev. E 67, 056104 (2003); G. Csányi, B. Szendrői, cond-mat/0305580

    Article  Google Scholar 

  9. D.J. Watts, P.S. Dodds, M.E.J. Newman, Science 296, 1302 (2002); See also J.M. Kleinberg, in Proceedings of the 2001 Neural Information Processing Systems Conference (MIT Press, Cambridge, 2002); A.E. Motter, T. Nishikawa, Y.-C. Lai, Phys. Rev. E 68, 036105 (2003)

    Article  ADS  Google Scholar 

  10. S. Milgram, Psychology Today 1, 60 (1967); J. Travers, S. Milgram, Sociometry 32, 425 (1969)

    Google Scholar 

  11. M.E.J. Newman, Phys. Rev. E 68, 026121 (2003)

    Article  ADS  Google Scholar 

  12. M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. E 64, 026118 (2001)

    Article  ADS  Google Scholar 

  13. M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 8271 (2002)

    Article  MathSciNet  Google Scholar 

  14. M.E.J. Newman, J. Park, Phys. Rev. E 68, 036122 (2003)

    Article  ADS  Google Scholar 

  15. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002); Phys. Rev. E 67, 026126 (2003)

    Article  ADS  Google Scholar 

  16. R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001)

    Article  ADS  Google Scholar 

  17. D.S. Callaway, J.E. Hopcropt, J.M. Kleinberg, M.E.J. Newman, S.H. Strogatz, Phys. Rev. E 64, 041902 (2001)

    Article  ADS  Google Scholar 

  18. M.E.J. Newman, Proc. Natl. Acad. Sci. USA 98, 404 (2001); Phys. Rev. E 64, 016131 (2001); Phys. Rev. E 64, 016132 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  19. A.-L. Barabási, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, T. Vicsek, Physica A 311, 590 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. http://www.imdb.com

  21. M.S. Granovetter, Am. J. Sociol. 78, 1360 (1973)

    Article  Google Scholar 

  22. M.E.J. Newman, D.J. Watts, S.H. Strogatz, Proc. Natl. Acad. Sci. USA 99, 2566 (2002)

    Article  ADS  Google Scholar 

  23. F. Chung, L. Lu, Adv. Appl. Math. 26, 257 (2001)

    Article  Google Scholar 

  24. A.-L. Barabási, Linked: The New Science of Networks (Perseus, Cambridge, 2002)

  25. G. Caldarelli, A. Capocci, P. De Los Rios, M.A. Muñoz, Phys. Rev. Lett. 89, 258702 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kahng.

Additional information

Received: 27 October 2003, Published online: 17 February 2004

PACS:

89.65.-s Social and economic systems - 89.75.Hc Networks and genealogical trees - 89.75.Da Systems obeying scaling laws

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DH., Kahng, B. & Kim, D. Multi-component static model for social networks. Eur. Phys. J. B 38, 305–309 (2004). https://doi.org/10.1140/epjb/e2004-00018-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00018-0

Keywords