Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Performance of local orbital basis sets in the self-consistent Sternheimer method for dielectric matrices of extended systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present a systematic study of the performance of numerical pseudo-atomic orbital basis sets in the calculation of dielectric matrices of extended systems using the self-consistent Sternheimer approach of [F. Giustino et al., Phys. Rev. B 81, 115105 (2010)]. In order to cover a range of systems, from more insulating to more metallic character, we discuss results for the three semiconductors diamond, silicon, and germanium. Dielectric matrices of silicon and diamond calculated using our method fall within 1% of reference planewaves calculations, demonstrating that this method is promising. We find that polarization orbitals are critical for achieving good agreement with planewaves calculations, and that only a few additional ζ’s are required for obtaining converged results, provided the split norm is properly optimized. Our present work establishes the validity of local orbital basis sets and the self-consistent Sternheimer approach for the calculation of dielectric matrices in extended systems, and prepares the ground for future studies of electronic excitations using these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)

    Article  ADS  Google Scholar 

  2. C.K. Skylaris, P.D. Haynes, A.A. Mostofi, M.C. Payne, J. Chem. Phys. 122, 084119 (2005)

    Article  ADS  Google Scholar 

  3. D.R. Bowler, T. Miyazaki, J. Phys.: Condens. Matter 22, 074207 (2010)

    Article  ADS  Google Scholar 

  4. W. Kohn, Phys. Rev. Lett. 76, 3168 (1996)

    Article  ADS  Google Scholar 

  5. P. Ordejón, D.A. Drabold, M.P. Grumbach, R.M. Martin, Phys. Rev. B 48, 14646 (1993)

    Article  ADS  Google Scholar 

  6. F. Mauri, G. Galli, R. Car, Phys. Rev. B 47, 9973 (1993)

    Article  ADS  Google Scholar 

  7. P. Ordejón, E. Artacho, J.M. Soler, Phys. Rev. B 53, R10441 (1996)

    Article  ADS  Google Scholar 

  8. S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999)

    Article  ADS  Google Scholar 

  9. L. Hedin, Phys. Rev. 139, A796 (1965)

    Article  ADS  Google Scholar 

  10. M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986)

    Article  ADS  Google Scholar 

  11. J. Ihm, A. Zunger, M.L. Cohen, J. Phys. C: Solid State Phys. 12, 4409 (1979)

    Article  ADS  Google Scholar 

  12. J.R. Chelikowsky, N. Troullier, Y. Saad, Phys. Rev. Lett. 72, 1240 (1994)

    Article  ADS  Google Scholar 

  13. F. Bruneval, X. Gonze, Phys. Rev. B 78, 085125 (2008)

    Article  ADS  Google Scholar 

  14. J.A. Berger, L. Reining, F. Sottile, Phys. Rev. B 82, 041103 (2010)

    Article  ADS  Google Scholar 

  15. H.F. Wilson, F. Gygi, G. Galli, Phys. Rev. B 78, 113303 (2008)

    Article  ADS  Google Scholar 

  16. H.F. Wilson, D. Lu, F. Gygi, G. Galli, Phys. Rev. B 79, 245106 (2009)

    Article  ADS  Google Scholar 

  17. F. Giustino, M.L. Cohen, S.G. Louie, Phys. Rev. B 81, 115105 (2010)

    Article  ADS  Google Scholar 

  18. P. Umari, G. Stenuit, S. Baroni, Phys. Rev. B 81, 115104 (2010)

    Article  ADS  Google Scholar 

  19. H. Hübener, M.A. Pérez-Osorio, P. Ordejón, F. Giustino, Phys. Rev. B 85, 245125 (2012)

    Article  ADS  Google Scholar 

  20. S. Baroni, P. Giannozzi, A. Testa, Phys. Rev. Lett. 58, 1861 (1987)

    Article  ADS  Google Scholar 

  21. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  22. F. Aryasetiawan, O. Gunnarsson, Phys. Rev. B 49, 16214 (1994)

    Article  ADS  Google Scholar 

  23. M. Rohlfing, P. Krüger, J. Pollmann, Phys. Rev. B 52, 1905 (1995)

    Article  ADS  Google Scholar 

  24. X. Blase, P. Ordejón, Phys. Rev. B 69, 085111 (2004)

    Article  ADS  Google Scholar 

  25. P. Koval, D. Foerster, O. Coulaud, Phys. Stat. Sol. B 247, 1841 (2010)

    Article  ADS  Google Scholar 

  26. D. Foerster, P. Koval, D. Sanchez-Portal, J. Chem. Phys. 135, 074105 (2011)

    Article  Google Scholar 

  27. X. Blase, C. Attaccalite, V. Olevano, Phys. Rev. B 83, 115103 (2011)

    Article  ADS  Google Scholar 

  28. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  29. E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, J.M. Soler, Phys. Stat. Sol. B 215, 809 (1999)

    Article  ADS  Google Scholar 

  30. D. Sánchez-Portal, E. Artacho, J.M. Soler, J. Phys.: Condens. Matter 8, 3859 (1996)

    Article  ADS  Google Scholar 

  31. J. Junquera, O. Paz, D. Sánchez-Portal, E. Artacho, Phys. Rev. B 64, 235111 (2001)

    Article  ADS  Google Scholar 

  32. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  33. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  34. M.S. Hybertsen, S.G. Louie, Phys. Rev. B 35, 5585 (1987)

    Article  ADS  Google Scholar 

  35. X. Gonze et al., Comput. Phys. Commun. 180, 2582 (2009)

    Article  ADS  Google Scholar 

  36. A. Marini, C. Hogan, M. Grüning, D. Varsano, Comput. Phys. Commun. 180, 1392 (2009)

    Article  ADS  Google Scholar 

  37. S.L. Adler, Phys. Rev. 126, 413 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. N. Wiser, Phys. Rev. 129, 62 (1963)

    Article  ADS  MATH  Google Scholar 

  39. J.P. Walter, M.L. Cohen, Phys. Rev. B 2, 1821 (1970)

    Article  ADS  Google Scholar 

  40. I. Ciofini, C. Adamo, J. Phys. Chem. A 111, 5549 (2007)

    Article  Google Scholar 

  41. S. García-Gil, A. García, N. Lorente, P. Ordejón, Phys. Rev. B 79, 075441 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hübener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hübener, H., Pérez-Osorio, M.A., Ordejón, P. et al. Performance of local orbital basis sets in the self-consistent Sternheimer method for dielectric matrices of extended systems. Eur. Phys. J. B 85, 321 (2012). https://doi.org/10.1140/epjb/e2012-30106-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30106-3

Keywords