Abstract
We present a systematic study of the performance of numerical pseudo-atomic orbital basis sets in the calculation of dielectric matrices of extended systems using the self-consistent Sternheimer approach of [F. Giustino et al., Phys. Rev. B 81, 115105 (2010)]. In order to cover a range of systems, from more insulating to more metallic character, we discuss results for the three semiconductors diamond, silicon, and germanium. Dielectric matrices of silicon and diamond calculated using our method fall within 1% of reference planewaves calculations, demonstrating that this method is promising. We find that polarization orbitals are critical for achieving good agreement with planewaves calculations, and that only a few additional ζ’s are required for obtaining converged results, provided the split norm is properly optimized. Our present work establishes the validity of local orbital basis sets and the self-consistent Sternheimer approach for the calculation of dielectric matrices in extended systems, and prepares the ground for future studies of electronic excitations using these methods.
Similar content being viewed by others
References
J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)
C.K. Skylaris, P.D. Haynes, A.A. Mostofi, M.C. Payne, J. Chem. Phys. 122, 084119 (2005)
D.R. Bowler, T. Miyazaki, J. Phys.: Condens. Matter 22, 074207 (2010)
W. Kohn, Phys. Rev. Lett. 76, 3168 (1996)
P. Ordejón, D.A. Drabold, M.P. Grumbach, R.M. Martin, Phys. Rev. B 48, 14646 (1993)
F. Mauri, G. Galli, R. Car, Phys. Rev. B 47, 9973 (1993)
P. Ordejón, E. Artacho, J.M. Soler, Phys. Rev. B 53, R10441 (1996)
S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999)
L. Hedin, Phys. Rev. 139, A796 (1965)
M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986)
J. Ihm, A. Zunger, M.L. Cohen, J. Phys. C: Solid State Phys. 12, 4409 (1979)
J.R. Chelikowsky, N. Troullier, Y. Saad, Phys. Rev. Lett. 72, 1240 (1994)
F. Bruneval, X. Gonze, Phys. Rev. B 78, 085125 (2008)
J.A. Berger, L. Reining, F. Sottile, Phys. Rev. B 82, 041103 (2010)
H.F. Wilson, F. Gygi, G. Galli, Phys. Rev. B 78, 113303 (2008)
H.F. Wilson, D. Lu, F. Gygi, G. Galli, Phys. Rev. B 79, 245106 (2009)
F. Giustino, M.L. Cohen, S.G. Louie, Phys. Rev. B 81, 115105 (2010)
P. Umari, G. Stenuit, S. Baroni, Phys. Rev. B 81, 115104 (2010)
H. Hübener, M.A. Pérez-Osorio, P. Ordejón, F. Giustino, Phys. Rev. B 85, 245125 (2012)
S. Baroni, P. Giannozzi, A. Testa, Phys. Rev. Lett. 58, 1861 (1987)
S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)
F. Aryasetiawan, O. Gunnarsson, Phys. Rev. B 49, 16214 (1994)
M. Rohlfing, P. Krüger, J. Pollmann, Phys. Rev. B 52, 1905 (1995)
X. Blase, P. Ordejón, Phys. Rev. B 69, 085111 (2004)
P. Koval, D. Foerster, O. Coulaud, Phys. Stat. Sol. B 247, 1841 (2010)
D. Foerster, P. Koval, D. Sanchez-Portal, J. Chem. Phys. 135, 074105 (2011)
X. Blase, C. Attaccalite, V. Olevano, Phys. Rev. B 83, 115103 (2011)
N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)
E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, J.M. Soler, Phys. Stat. Sol. B 215, 809 (1999)
D. Sánchez-Portal, E. Artacho, J.M. Soler, J. Phys.: Condens. Matter 8, 3859 (1996)
J. Junquera, O. Paz, D. Sánchez-Portal, E. Artacho, Phys. Rev. B 64, 235111 (2001)
D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)
J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)
M.S. Hybertsen, S.G. Louie, Phys. Rev. B 35, 5585 (1987)
X. Gonze et al., Comput. Phys. Commun. 180, 2582 (2009)
A. Marini, C. Hogan, M. Grüning, D. Varsano, Comput. Phys. Commun. 180, 1392 (2009)
S.L. Adler, Phys. Rev. 126, 413 (1962)
N. Wiser, Phys. Rev. 129, 62 (1963)
J.P. Walter, M.L. Cohen, Phys. Rev. B 2, 1821 (1970)
I. Ciofini, C. Adamo, J. Phys. Chem. A 111, 5549 (2007)
S. García-Gil, A. García, N. Lorente, P. Ordejón, Phys. Rev. B 79, 075441 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hübener, H., Pérez-Osorio, M.A., Ordejón, P. et al. Performance of local orbital basis sets in the self-consistent Sternheimer method for dielectric matrices of extended systems. Eur. Phys. J. B 85, 321 (2012). https://doi.org/10.1140/epjb/e2012-30106-3
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjb/e2012-30106-3