Abstract
We study the time evolution of ranking and spectral properties of the Google matrix of English Wikipedia hyperlink network during years 2003–2011. The statistical properties of ranking of Wikipedia articles via PageRank and CheiRank probabilities, as well as the matrix spectrum, are shown to be stabilized for 2007–2011. A special emphasis is done on ranking of Wikipedia personalities and universities. We show that PageRank selection is dominated by politicians while 2DRank, which combines PageRank and CheiRank, gives more accent on personalities of arts. The Wikipedia PageRank of universities recovers 80% of top universities of Shanghai ranking during the considered time period.
Similar content being viewed by others
References
Wikipedia, en.wikipedia.org/wiki/Wikipedia
F.A. Nielsen, Wikipedia research and tools: review and comments, available at SSRN: dx.doi.org/10.2139/ssrn.2129874 (2012)
J.L. Borges, The Library of Babel in Ficciones (Grove Press, New York, 1962)
A.A. Markov, Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga, Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 2-ya seriya 15, 135 (1906) (in Russian) [English trans.: Extension of the limit theorems of probability theory to a sum of variables connected in a chain reprinted in Appendix B of: R.A. Howard Dynamic Probabilistic Systems, volume 1: Markov models (Dover Publ., 2007)]
M. Brin, G. Stuck, Introduction to dynamical systems (Cambridge University Press, Cambridge, 2002)
S. Brin, L. Page, Computer Networks and ISDN Systems 30, 107 (1998)
A.M. Langville, C.D. Meyer, Google’s PageRank and Beyond: The Science of Search Engine Rankings (Princeton University Press, Princeton, 2006)
A.O. Zhirov, O.V. Zhirov, D.L. Shepelyansky, Eur. Phys. J. B 77, 523 (2010)
L. Ermann, A.D. Chepelianskii, D.L. Shepelyansky, J. Phys. A 45, 275101 (2012)
K.M. Frahm, D.L. Shepelyansky, Eur. Phys. J. B 85, 355 (2012)
L. Ermann, K.M. Frahm, D.L. Shepelyansky, Eur. Phys. J. B 86, 193 (2013)
G.W. Stewart, Matrix Algorithms Eigensystems (SIAM, Philadelphia, 2001), Vol. II
G.H. Golub, C. Greif, BIT Num. Math. 46, 759 (2006)
K.M. Frahm, D.L. Shepelyansky, Eur. Phys. J. B 76, 57 (2010)
K.M. Frahm, B. Georgeot, D.L. Shepelyansky, J. Phys. A 44, 465101 (2011)
D. Fogaras, Lect. Notes Comput. Sci. 2877, 65 (2003)
V. Hrisitidis, H. Hwang, Y. Papakonstantino, ACM Trans. Database Syst. 33, 1 (2008)
A.D. Chepelianskii, Towards physical laws for software architecture (2010), arXiv:1003.5455 [cs.SE], www.quantware.ups-tlse.fr/QWLIB/linuxnetwork/
D. Donato, L. Laura, S. Leonardi, S. Millozzi, Eur. Phys. J. B 38, 239 (2004)
G. Pandurangan, P. Raghavan, E. Upfal, Internet Math. 3, 1 (2005)
N. Litvak, W.R.W. Scheinhardt, Y. Volkovich, Lect. Notes Comput. Sci. 4936, 72 (2008)
M.H. Hart, The 100: ranking of the most influential persons in history (Citadel Press, New York, 1992)
K. Zyczkowski, M. Kus, W. Slomczynski, H.-J. Sommers, J. Phys. A 36, 3425 (2003)
S. Fortunato, Phys. Rep. 486, 75 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Eom, YH., Frahm, K., Benczúr, A. et al. Time evolution of Wikipedia network ranking. Eur. Phys. J. B 86, 492 (2013). https://doi.org/10.1140/epjb/e2013-40432-5
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjb/e2013-40432-5