Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

THz electrodynamics of mixed-valent YbAl\(_3\) and LuAl\(_3\) thin films

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present our results from time-domain THz spectroscopy measurements of thin films of mixed-valent YbAl\(_3\) and its structural analogue LuAl\(_3\). Combined with Fourier transform infrared (FTIR) spectroscopy, the extended Drude formalism is utilized to study the quasiparticle scattering rate and effective masses in YbAl\(_3\). We find that LuAl\(_3\) demonstrates conventional Drude transport whereas at low temperatures YbAl\(_3\) demonstrates a renormalized Drude peak and a mid-infrared (MIR) peak in the conductivity, indicative of the formation of a mass-enhanced Fermi liquid (FL). In YbAl\(_3\) the extended Drude analysis demonstrates consistency with FL behavior below the FL coherence temperature \(T^* < 40\) K with the scattering rate following \(T^2\) proportionality and a moderate mass enhancement. Despite not observing a clear \(\omega ^2\) Fermi liquid-like frequency dependence the evidence is consistent with a moderate mass Fermi liquid, albeit one with a smaller mass than observed in single crystals. The extended Drude analysis also demonstrates a slow crossover between the FL state and the normal state above the \(T^*\) in YbAl\(_3\), indicative of incoherent hybridization effects persisting to high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.]

References

  1. G. Stewart, Rev. Mod. Phys. 56, 755 (1984)

    Article  ADS  Google Scholar 

  2. P. Coleman, Phys. Rev. Lett. 59, 1026 (1987a)

    Article  ADS  Google Scholar 

  3. C.M. Varma, Rev. Mod. Phys. 48, 219 (1976)

    Article  ADS  Google Scholar 

  4. Z. Fisk, M.B. Maple, J. Alloys Compd. 183, 303 (1992)

    Article  Google Scholar 

  5. E.D. Bauer, C.H. Booth, J.M. Lawrence, M.F. Hundley, T. Ebihara, J.D. Thompson, P.S. Riseborough, Phys. Rev. B 69, 1 (2004)

    Article  Google Scholar 

  6. P. Kumar, N.S. Vidhyadhiraja, J. Phys. Condens. Matter 23, 1–13 (2011)

  7. B.H. Brandow, Phys. Rev. B 33, 95 (1986)

    Article  Google Scholar 

  8. L. Degiorgi, Rev. Mod. Phys. 71, 687 (1999)

    Article  ADS  Google Scholar 

  9. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  ADS  Google Scholar 

  10. A.N. Tahvildar-Zadeh, M. Jarrell, J.K. Freericks, Phys. Rev. B 55, R3332 (1997)

    Article  ADS  Google Scholar 

  11. S. Burdin, V. Zlatić, Phys. Rev. B 79, 1 (2009)

    Article  Google Scholar 

  12. K. Andres, J.E. Graebner, H.R. Ott, Phys. Rev. Lett. 35, 1779 (1975)

    Article  ADS  Google Scholar 

  13. A.M. Awasthi, L. Degiorgi, G. Grüner, Y. Dalichaouch, M.B. Maple, Phys. Rev. B 48, 10692 (1993)

    Article  ADS  Google Scholar 

  14. B.C. Webb, A.J. Sievers, T. Mihalisin, Phys. Rev. Lett. 57, 1951 (1986)

    Article  ADS  Google Scholar 

  15. S. Nakatsuji, K. Kuga, Y. Machida, T. Tayama, T. Sakakibara, Y. Karaki, H. Ishimoto, S. Yonezawa, Y. Maeno, E. Pearson, G.G. Lonzarich, L. Balicas, H. Lee, Z. Fisk, Nat. Phys. 4, 603 (2008)

    Article  Google Scholar 

  16. E. Schuberth, M. Tippmann, L. Steinke, S. Lausberg, A. Steppke, M. Brando, C. Krellner, C. Geibel, R. Yu, Q. Si, F. Steglich, Science (80-). 351, 485 (2016)

    Article  ADS  Google Scholar 

  17. A. Ramires, P. Coleman, A.H. Nevidomskyy, A.M. Tsvelik, Phys. Rev. Lett. 109, 1 (2012)

    Article  Google Scholar 

  18. E.E. Havinga, K.H. Buschow, H.J. van Daal, Solid State Commun. 13, 621 (1973)

    Article  ADS  Google Scholar 

  19. L. Tjeng, S.J. Oh, E. Cho, H. Lin, C. Chen, G. Gweon, J. Park, J.W. Allen, T. Suzuki, M. Makivic, D. Cox, Phys. Rev. Lett. 71, 1419 (1993)

    Article  ADS  Google Scholar 

  20. D.M. Rowe, V.L. Kuznetsov, L.A. Kuznetsova, G. Min, J. Phys. D 35, 2183 (2002)

    Article  ADS  Google Scholar 

  21. A.L. Cornelius, J.M. Lawrence, T. Ebihara, P.S. Riseborough, C.H. Booth, M.F. Hundley, P.G. Pagliuso, J.L. Sarrao, J.D. Thompson, M.H. Jung, A.H. Lacerda, G.H. Kwei, Phys. Rev. Lett. 88, 117201 (2002)

    Article  ADS  Google Scholar 

  22. L. Degiorgi, F.B. Anders, G. Grüner, Eur. Phys. J. B 19, 167 (2001)

    Article  ADS  Google Scholar 

  23. H. Okamura, T. Michizawa, T. Nanba, T. Ebihara, J. Phys. Soc. Jpn. 73, 2045 (2004)

    Article  ADS  Google Scholar 

  24. T. Ebihara, Y. Inada, M. Murakawa, S. Uji, C. Terakura, T. Terashima, E. Yamamoto, Y. Haga, Y. Onuki, H. Harima, J. Phys. Soc. Jpn. 69, 895 (2000)

    Article  ADS  Google Scholar 

  25. T. Ebihara, E.D. Bauer, A.L. Cornelius, J.M. Lawrence, N. Harrison, J.D. Thompson, J.L. Sarrao, M.F. Hundley, S. Uji, Phys. Rev. Lett. 90, 166404 (2003)

    Article  ADS  Google Scholar 

  26. S. Chatterjee, S.H. Sung, D.J. Baek, L.F. Kourkoutis, D.G. Schlom, K.M. Shen, J. Appl. Phys. 120, 1 (2016)

    Article  Google Scholar 

  27. S. Chatterjee, J.P. Ruf, H.I. Wei, K.D. Finkelstein, D.G. Schlom, K.M. Shen, Nat. Commun. 8, 1 (2017)

    Article  Google Scholar 

  28. G. Bossé, L.S. Bilbro, R.V. Aguilar, L. Pan, W. Liu, A.V. Stier, Y. Li, L.H. Greene, J. Eckstein, N.P. Armitage, Phys. Rev. B 85, 1 (2012)

    Google Scholar 

  29. G. Bossé, L. Pan, Y.S. Li, L.H. Greene, J. Eckstein, N.P. Armitage, Phys. Rev. B 93, 1 (2016)

    Article  Google Scholar 

  30. K.L. Krewer, Z. Mics, J. Arabski, G. Schmerber, E. Beaurepaire, M. Bonn, D. Turchinovich, Opt. Lett. 43, 447 (2018)

    Article  ADS  Google Scholar 

  31. A.B. Kuzmenko, Rev. Sci. Instrum. 76, 1 (2005)

    Article  Google Scholar 

  32. F. Marabelli, P. Wachter, Phys. Scr. 120, 120–124 (1992)

  33. J.L. Lv, J.L. Luo, N.L. Wang, Chinese Phys. B 27, 1–6 (2018)

  34. P. Coleman, Phys. Rev. B 35, 5072 (1987b)

    Article  ADS  Google Scholar 

  35. J.W. Allen, J.C. Mikkelsen, Phys. Rev. B 15, 2952 (1977)

    Article  ADS  Google Scholar 

  36. M.H. Hamidian, A.R. Schmidt, I.A. Firmo, M.P. Allan, P. Bradley, J.D. Garrett, T.J. Williams, G.M. Luke, Y. Dubi, A.V. Balatsky, J.C. Davis, Proc. Natl. Acad. Sci. USA 108, 18233 (2011)

    Article  ADS  Google Scholar 

  37. P. Kumar, N.S. Vidhyadhiraja, Phys. Rev. B 90, 1 (2014)

    Google Scholar 

  38. N.C. Costa, T. Mendes-Santos, T. Paiva, N.J. Curro, R.R. dos Santos, R.T. Scalettar, Phys. Rev. B 99, 195116 (2019)

    Article  ADS  Google Scholar 

  39. J.M. Lawrence, P.S. Riseborough, C.H. Booth, J.L. Sarrao, J.D. Thompson, R. Osborn, Phys. Rev. B 63, 1 (2001)

    Article  Google Scholar 

  40. H. Anzai, K. Morikawa, H. Shiono, H. Sato, S.-I. Ideta, K. Tanaka, T. Zhuang, K.T. Matsumoto, K. Hiraoka, Phys. Rev. B 101, 1 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The work at J.H.U was supported by the Moore Foundation EPiQS Grant No. (90088577). The work at Cornell was supported by the Air Force Office of Scientific Research Grant No. FA9550-15-1-0474 and by the National Science Foundation (Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials, PARADIM) under Cooperative Agreement No. DMR-1539918. Substrate preparation was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the NSF (Grant No. ECCS-1542081, DMR-170925).

Author information

Authors and Affiliations

Authors

Contributions

DB performed the THz experiments and analyzed the data. SC grew the thin films. DB and NPA prepared the first draft, and all authors contributed to writing the manuscript.

Corresponding authors

Correspondence to D. Barbalas or N. P. Armitage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbalas, D., Chatterjee, S., Schlom, D.G. et al. THz electrodynamics of mixed-valent YbAl\(_3\) and LuAl\(_3\) thin films. Eur. Phys. J. B 94, 186 (2021). https://doi.org/10.1140/epjb/s10051-021-00191-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00191-y