Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Unsupervised machine learning approaches to the q-state Potts model

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we study phase transitions of the q-state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA), k-means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though in all cases we are able to retrieve the correct critical temperatures \(T_\textrm{c}(q)\), for \(q=3,4\) and 5, results show that non-linear methods as UMAP and TDA are less dependent on finite-size effects. This study may be considered as a benchmark for the use of different unsupervised machine learning algorithms in the investigation of phase transitions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. At this point, we note that when feeding PCA, instead of providing \(\mathbf {\sigma }= [n_1, n_2, \ldots ]\), we provide their directions, i.e., \(\mathbf {\sigma }= [(\cos \theta _1, \sin \theta _1), (\cos \theta _2, \sin \theta _2), \ldots ]\). Thus, our dataset matrix has \(2\times L^2\) columns. We emphasize that such a change does not affect the final results, just the spacial position (patterns) of the clusters in PCA space.

References

  1. H.E. Stanley, Rev. Mod. Phys. 71, S358 (1999)

    Google Scholar 

  2. I. Herbut, A Modern Approach to Critical Phenomena (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  3. D. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2021)

    MATH  Google Scholar 

  4. A.W. Sandvik, AIP Conference Proceedings, vol. 1297 (American Institute of Physics, 2010), pp.135–338

  5. J. Gubernatis, N. Kawashima, P. Werner, Quantum Monte Carlo Methods: Algorithms for Lattice Models (Cambridge University Press, Cambridge, 2016)

    MATH  Google Scholar 

  6. F. Becca, S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems (Cambridge University Press, Cambridge, 2017)

    MATH  Google Scholar 

  7. M.E. Fisher, in Proceedings of the Enrico Fermi International School of Physics, Vol. 51, edited by M. S. Green (Academic Press, New York, 1971)

  8. M.N. Barber, in Phase Transitions and Critical Phenomena. ed. by C. Domb, J.L. Lebowitz (Academic Press, New York, 1983), p.145

    Google Scholar 

  9. S. Angra, S. Ahuja, in 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC) (IEEE, 2017) vol 597, pp. 57–60

  10. P.P. Shinde, S. Shah, in 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA) (IEEE, 2018) pp. 1–6

  11. A.C. Mater, M.L. Coote, J. Chem. Inf. Model. 59, 2545 (2019)

    Google Scholar 

  12. A. Akay, H. Hess, IEEE J. Biomed. Health Inf. 23, 906 (2019)

    Google Scholar 

  13. V. Dunjko, H.J. Briegel, Rep. Prog. Phys. 81, 074001 (2018)

    ADS  Google Scholar 

  14. G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, L. Zdeborová, Rev. Mod. Phys. 91, 045002 (2019)

    ADS  Google Scholar 

  15. J. Carrasquilla, Adv. Phys. X 5, 1797528 (2020)

    Google Scholar 

  16. L. Wang, Phys. Rev. B 94, 195105 (2016)

    ADS  Google Scholar 

  17. W. Hu, R.R.P. Singh, R.T. Scalettar, Phys. Rev. E 95, 062122 (2017)

    ADS  Google Scholar 

  18. N.C. Costa, W. Hu, Z.J. Bai, R.T. Scalettar, R.R.P. Singh, Phys. Rev. B 96, 195138 (2017)

    ADS  Google Scholar 

  19. C. Wang, H. Zhai, Phys. Rev. B 96, 144432 (2017)

    ADS  Google Scholar 

  20. C. Wang, H. Zhai, Front. Phys. 13, 1 (2018)

    Google Scholar 

  21. E. Khatami, J. Phys. Conf. Ser. 1290, 012006 (2019)

    Google Scholar 

  22. S.J. Wetzel, Phys. Rev. E 96, 022140 (2017)

    ADS  Google Scholar 

  23. K. Ch’ng, N. Vazquez, E. Khatami, Phys. Rev. E 97, 013306 (2018)

    ADS  Google Scholar 

  24. W. Zhang, J. Liu, T.-C. Wei, Phys. Rev. E 99, 032142 (2019)

    ADS  MathSciNet  Google Scholar 

  25. K. Ch’ng, J. Carrasquilla, R.G. Melko, E. Khatami, Phys. Rev. X 7, 031038 (2017)

    Google Scholar 

  26. P. Broecker, J. Carrasquilla, R.G. Melko, S. Trebst, Sci. Rep. 7, 1 (2017)

    Google Scholar 

  27. J. Carrasquilla, R.G. Melko, Nat. Phys. 13, 431 (2017)

    Google Scholar 

  28. D. Kim, D.-H. Kim, Phys. Rev. E 98, 022138 (2018)

    ADS  Google Scholar 

  29. P. Zhang, H. Shen, H. Zhai, Phys. Rev. Lett. 120, 066401 (2018)

    ADS  Google Scholar 

  30. E. Khatami, E. Guardado-Sanchez, B.M. Spar, J.F. Carrasquilla, W.S. Bakr, R.T. Scalettar, Phys. Rev. A 102, 033326 (2020)

    ADS  Google Scholar 

  31. Y. Nomura, A.S. Darmawan, Y. Yamaji, M. Imada, Phys. Rev. B 96, 205152 (2017)

    ADS  Google Scholar 

  32. L. Huang, L. Wang, Phys. Rev. B 95, 035105 (2017)

    ADS  Google Scholar 

  33. R.G. Melko, G. Carleo, J. Carrasquilla, J.I. Cirac, Nat. Phys. 15, 887 (2019)

    Google Scholar 

  34. T. Mendes-Santos, X. Turkeshi, M. Dalmonte, A. Rodriguez, Phys. Rev. X 11, 011040 (2021)

    Google Scholar 

  35. T. Mendes-Santos, A. Angelone, A. Rodriguez, R. Fazio, M. Dalmonte, PRX Quantum 2, 030332 (2021)

    ADS  Google Scholar 

  36. I. Donato, M. Gori, M. Pettini, G. Petri, S. De Nigris, R. Franzosi, F. Vaccarino, Phys. Rev. E 93, 052138 (2016)

    ADS  Google Scholar 

  37. Q.H. Tran, M. Chen, Y. Hasegawa, Phys. Rev. E 103, 052127 (2021)

    ADS  Google Scholar 

  38. M. Feng, M.A. Porter, Phys. Rev. Res. 2, 033426 (2020)

    Google Scholar 

  39. B. Olsthoorn, J. Hellsvik, A.V. Balatsky, Phys. Rev. Res. 2, 043308 (2020)

    Google Scholar 

  40. D. Leykam, D.G. Angelakis, APL Photon. 6, 030802 (2021)

    ADS  Google Scholar 

  41. K. Kashiwa, T. Hirakida, H. Kouno, arXiv:2103.12554 ( 2021)

  42. A. Tirelli, N.C. Costa, Phys. Rev. B 104, 235146 (2021)

    ADS  Google Scholar 

  43. R.B. Potts, Math. Proc. Camb. Philos. Soc. 48, 106–109 (1952)

    ADS  Google Scholar 

  44. F.-Y. Wu, Rev. Mod. Phys. 54, 235 (1982)

    ADS  Google Scholar 

  45. K. Shiina, H. Mori, Y. Okabe, H.K. Lee, Sci. Rep. 10, 1 (2020)

    Google Scholar 

  46. K. Fukushima, K. Sakai, Progress Theoret. Exp. Phys., p. 061A01 ( 2021)

  47. D. Giataganas, C.-Y. Huang, F.-L. Lin, New J. Phys. 24, 043040 (2022)

    ADS  Google Scholar 

  48. A. Tanaka, A. Tomiya, J. Phys. Soc. Jpn. 86, 063001 (2017)

    ADS  Google Scholar 

  49. C. Alexandrou, A. Athenodorou, C. Chrysostomou, S. Paul, Eur. Phys. J. B 93, 1 (2020)

    Google Scholar 

  50. I. Corte, S. Acevedo, M. Arlego, C.A. Lamas, Comput. Mater. Sci. 198, 110702 (2021)

    Google Scholar 

  51. S. Acevedo, M. Arlego, C.A. Lamas, Phys. Rev. B 103, 134422 (2021)

    ADS  Google Scholar 

  52. O. Kara, A. Sehanobish, H.H. Corzo, arXiv preprint arXiv:2109.13925 (2021)

  53. S. Cheng, F. He, H. Zhang, K.-D. Zhu, Y. Shi, arXiv preprint arXiv:2101.08928 ( 2021)

  54. S. Wold, K. Esbensen, P. Geladi, Chemom. Intell. Lab. Syst. 2, 37 (1987)

    Google Scholar 

  55. J. MacQueen, et al., in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 14 (Oakland, CA, USA, 1967) vol 5.1, pp. 281–297

  56. L. McInnes, J. Healy, J. Melville, arXiv preprint arXiv:1802.03426 (2018)

  57. G. Carlsson, Bull. Am. Math. Soc. 46, 255 (2009)

    Google Scholar 

  58. M.P.M. den Nijs, J. Phys. A Math. Gen. 12, 1857 (1979)

    ADS  Google Scholar 

  59. H. Abdi, L.J. Williams, Wiley Interdiscipl. Rev. Comput. Stat. 2, 433 (2010)

    Google Scholar 

  60. M. Ringnér, Nat. Biotechnol. 26, 303 (2008)

    Google Scholar 

  61. H. Steinhaus et al., Bull. Acad. Pol. Sci 1, 801 (1956)

    Google Scholar 

  62. M. Mahajan, P. Nimbhorkar, K. Varadarajan, Theoret. Comput. Sci. 442, 13 (2012). (special Issue on the Workshop on Algorithms and Computation (WALCOM 2009))

    MathSciNet  Google Scholar 

  63. J.A. Hartigan, M.A. Wong, J. R. Stat. Soc. 28, 100 (1979)

  64. T. Sainburg, L. McInnes, T.Q. Gentner, arXiv preprint arXiv:2009.12981 (2020)

  65. L. Van der Maaten, G. Hinton, J. Machi. Learn. Res. 9, 2579–2605(2008)

  66. H. Edelsbrunner, J. Harer, Computational Topology: An Introduction (American Mathematical Soc., Providence, 2010)

    MATH  Google Scholar 

  67. U. Von Luxburg, Stat. Comput. 17, 395 (2007)

    MathSciNet  Google Scholar 

  68. J. Liu, J. Han, Data Clustering (Chapman and Hall/CRC, London, 2018), pp.177–200

    Google Scholar 

  69. R. Jimenez, Rock Mech. Rock Eng. 41, 929 (2008)

    ADS  Google Scholar 

  70. K. Binder, Zeitschrift für Physik B Condens. Matter 43, 119 (1981)

    ADS  Google Scholar 

  71. K. Binder, Phys. Rev. Lett. 47, 693 (1981)

    ADS  Google Scholar 

  72. R.R. dos Santos, L. Sneddon, Phys. Rev. B 23, 3541 (1981)

    ADS  MathSciNet  Google Scholar 

  73. M.E. Fisher, A.N. Berker, Phys. Rev. B 26, 2507 (1982)

    ADS  Google Scholar 

Download references

Acknowledgements

A.T. acknowledges financial support from the MIUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2017 - grant 2017BZPKSZ. A.T. and N.C.C. acknowledge CINECA for awarding them access to the Marconi100 supercomputer, through the ISCRA framework, within the projects AI-H-QMC - HP10BGJH1X, and IsB23 (ISCRA-HP10BF65I0). N.C.C. acknowledges financial support from the Brazilian Agency National Council for Scientific and Technological Development (CNPq), grant number 313065/2021-7. D.O.C., L.A.O., J.P.L., N.C.C., and R.R.d.S. are grateful to the Brazilian Agencies CNPq, National Council for the Improvement of Higher Education (CAPES), FAPERJ, and FAPEPI for partially funding this project.

Author information

Authors and Affiliations

Authors

Contributions

NCC, RRS, and AT conceived the project. DOC and LAO carried out Monte Carlo simulations of the Potts model under the guidance of NCC and RRS. The codes and the results for PCA and k-means were implemented/obtained by DOC, LAO, and JPL, while AT implemented the codes and obtained results for the TDA and UMAP ones. AT and NCC wrote the manuscript, and all authors participated in the discussions during the writing process.

Corresponding author

Correspondence to Andrea Tirelli.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tirelli, A., Carvalho, D.O., Oliveira, L.A. et al. Unsupervised machine learning approaches to the q-state Potts model. Eur. Phys. J. B 95, 189 (2022). https://doi.org/10.1140/epjb/s10051-022-00453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00453-3