Abstract
In this paper, we study phase transitions of the q-state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA), k-means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though in all cases we are able to retrieve the correct critical temperatures \(T_\textrm{c}(q)\), for \(q=3,4\) and 5, results show that non-linear methods as UMAP and TDA are less dependent on finite-size effects. This study may be considered as a benchmark for the use of different unsupervised machine learning algorithms in the investigation of phase transitions.
Graphical abstract
Similar content being viewed by others
Data availability statement
The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.
Notes
At this point, we note that when feeding PCA, instead of providing \(\mathbf {\sigma }= [n_1, n_2, \ldots ]\), we provide their directions, i.e., \(\mathbf {\sigma }= [(\cos \theta _1, \sin \theta _1), (\cos \theta _2, \sin \theta _2), \ldots ]\). Thus, our dataset matrix has \(2\times L^2\) columns. We emphasize that such a change does not affect the final results, just the spacial position (patterns) of the clusters in PCA space.
References
H.E. Stanley, Rev. Mod. Phys. 71, S358 (1999)
I. Herbut, A Modern Approach to Critical Phenomena (Cambridge University Press, Cambridge, 2007)
D. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2021)
A.W. Sandvik, AIP Conference Proceedings, vol. 1297 (American Institute of Physics, 2010), pp.135–338
J. Gubernatis, N. Kawashima, P. Werner, Quantum Monte Carlo Methods: Algorithms for Lattice Models (Cambridge University Press, Cambridge, 2016)
F. Becca, S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems (Cambridge University Press, Cambridge, 2017)
M.E. Fisher, in Proceedings of the Enrico Fermi International School of Physics, Vol. 51, edited by M. S. Green (Academic Press, New York, 1971)
M.N. Barber, in Phase Transitions and Critical Phenomena. ed. by C. Domb, J.L. Lebowitz (Academic Press, New York, 1983), p.145
S. Angra, S. Ahuja, in 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC) (IEEE, 2017) vol 597, pp. 57–60
P.P. Shinde, S. Shah, in 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA) (IEEE, 2018) pp. 1–6
A.C. Mater, M.L. Coote, J. Chem. Inf. Model. 59, 2545 (2019)
A. Akay, H. Hess, IEEE J. Biomed. Health Inf. 23, 906 (2019)
V. Dunjko, H.J. Briegel, Rep. Prog. Phys. 81, 074001 (2018)
G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, L. Zdeborová, Rev. Mod. Phys. 91, 045002 (2019)
J. Carrasquilla, Adv. Phys. X 5, 1797528 (2020)
L. Wang, Phys. Rev. B 94, 195105 (2016)
W. Hu, R.R.P. Singh, R.T. Scalettar, Phys. Rev. E 95, 062122 (2017)
N.C. Costa, W. Hu, Z.J. Bai, R.T. Scalettar, R.R.P. Singh, Phys. Rev. B 96, 195138 (2017)
C. Wang, H. Zhai, Phys. Rev. B 96, 144432 (2017)
C. Wang, H. Zhai, Front. Phys. 13, 1 (2018)
E. Khatami, J. Phys. Conf. Ser. 1290, 012006 (2019)
S.J. Wetzel, Phys. Rev. E 96, 022140 (2017)
K. Ch’ng, N. Vazquez, E. Khatami, Phys. Rev. E 97, 013306 (2018)
W. Zhang, J. Liu, T.-C. Wei, Phys. Rev. E 99, 032142 (2019)
K. Ch’ng, J. Carrasquilla, R.G. Melko, E. Khatami, Phys. Rev. X 7, 031038 (2017)
P. Broecker, J. Carrasquilla, R.G. Melko, S. Trebst, Sci. Rep. 7, 1 (2017)
J. Carrasquilla, R.G. Melko, Nat. Phys. 13, 431 (2017)
D. Kim, D.-H. Kim, Phys. Rev. E 98, 022138 (2018)
P. Zhang, H. Shen, H. Zhai, Phys. Rev. Lett. 120, 066401 (2018)
E. Khatami, E. Guardado-Sanchez, B.M. Spar, J.F. Carrasquilla, W.S. Bakr, R.T. Scalettar, Phys. Rev. A 102, 033326 (2020)
Y. Nomura, A.S. Darmawan, Y. Yamaji, M. Imada, Phys. Rev. B 96, 205152 (2017)
L. Huang, L. Wang, Phys. Rev. B 95, 035105 (2017)
R.G. Melko, G. Carleo, J. Carrasquilla, J.I. Cirac, Nat. Phys. 15, 887 (2019)
T. Mendes-Santos, X. Turkeshi, M. Dalmonte, A. Rodriguez, Phys. Rev. X 11, 011040 (2021)
T. Mendes-Santos, A. Angelone, A. Rodriguez, R. Fazio, M. Dalmonte, PRX Quantum 2, 030332 (2021)
I. Donato, M. Gori, M. Pettini, G. Petri, S. De Nigris, R. Franzosi, F. Vaccarino, Phys. Rev. E 93, 052138 (2016)
Q.H. Tran, M. Chen, Y. Hasegawa, Phys. Rev. E 103, 052127 (2021)
M. Feng, M.A. Porter, Phys. Rev. Res. 2, 033426 (2020)
B. Olsthoorn, J. Hellsvik, A.V. Balatsky, Phys. Rev. Res. 2, 043308 (2020)
D. Leykam, D.G. Angelakis, APL Photon. 6, 030802 (2021)
K. Kashiwa, T. Hirakida, H. Kouno, arXiv:2103.12554 ( 2021)
A. Tirelli, N.C. Costa, Phys. Rev. B 104, 235146 (2021)
R.B. Potts, Math. Proc. Camb. Philos. Soc. 48, 106–109 (1952)
F.-Y. Wu, Rev. Mod. Phys. 54, 235 (1982)
K. Shiina, H. Mori, Y. Okabe, H.K. Lee, Sci. Rep. 10, 1 (2020)
K. Fukushima, K. Sakai, Progress Theoret. Exp. Phys., p. 061A01 ( 2021)
D. Giataganas, C.-Y. Huang, F.-L. Lin, New J. Phys. 24, 043040 (2022)
A. Tanaka, A. Tomiya, J. Phys. Soc. Jpn. 86, 063001 (2017)
C. Alexandrou, A. Athenodorou, C. Chrysostomou, S. Paul, Eur. Phys. J. B 93, 1 (2020)
I. Corte, S. Acevedo, M. Arlego, C.A. Lamas, Comput. Mater. Sci. 198, 110702 (2021)
S. Acevedo, M. Arlego, C.A. Lamas, Phys. Rev. B 103, 134422 (2021)
O. Kara, A. Sehanobish, H.H. Corzo, arXiv preprint arXiv:2109.13925 (2021)
S. Cheng, F. He, H. Zhang, K.-D. Zhu, Y. Shi, arXiv preprint arXiv:2101.08928 ( 2021)
S. Wold, K. Esbensen, P. Geladi, Chemom. Intell. Lab. Syst. 2, 37 (1987)
J. MacQueen, et al., in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 14 (Oakland, CA, USA, 1967) vol 5.1, pp. 281–297
L. McInnes, J. Healy, J. Melville, arXiv preprint arXiv:1802.03426 (2018)
G. Carlsson, Bull. Am. Math. Soc. 46, 255 (2009)
M.P.M. den Nijs, J. Phys. A Math. Gen. 12, 1857 (1979)
H. Abdi, L.J. Williams, Wiley Interdiscipl. Rev. Comput. Stat. 2, 433 (2010)
M. Ringnér, Nat. Biotechnol. 26, 303 (2008)
H. Steinhaus et al., Bull. Acad. Pol. Sci 1, 801 (1956)
M. Mahajan, P. Nimbhorkar, K. Varadarajan, Theoret. Comput. Sci. 442, 13 (2012). (special Issue on the Workshop on Algorithms and Computation (WALCOM 2009))
J.A. Hartigan, M.A. Wong, J. R. Stat. Soc. 28, 100 (1979)
T. Sainburg, L. McInnes, T.Q. Gentner, arXiv preprint arXiv:2009.12981 (2020)
L. Van der Maaten, G. Hinton, J. Machi. Learn. Res. 9, 2579–2605(2008)
H. Edelsbrunner, J. Harer, Computational Topology: An Introduction (American Mathematical Soc., Providence, 2010)
U. Von Luxburg, Stat. Comput. 17, 395 (2007)
J. Liu, J. Han, Data Clustering (Chapman and Hall/CRC, London, 2018), pp.177–200
R. Jimenez, Rock Mech. Rock Eng. 41, 929 (2008)
K. Binder, Zeitschrift für Physik B Condens. Matter 43, 119 (1981)
K. Binder, Phys. Rev. Lett. 47, 693 (1981)
R.R. dos Santos, L. Sneddon, Phys. Rev. B 23, 3541 (1981)
M.E. Fisher, A.N. Berker, Phys. Rev. B 26, 2507 (1982)
Acknowledgements
A.T. acknowledges financial support from the MIUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2017 - grant 2017BZPKSZ. A.T. and N.C.C. acknowledge CINECA for awarding them access to the Marconi100 supercomputer, through the ISCRA framework, within the projects AI-H-QMC - HP10BGJH1X, and IsB23 (ISCRA-HP10BF65I0). N.C.C. acknowledges financial support from the Brazilian Agency National Council for Scientific and Technological Development (CNPq), grant number 313065/2021-7. D.O.C., L.A.O., J.P.L., N.C.C., and R.R.d.S. are grateful to the Brazilian Agencies CNPq, National Council for the Improvement of Higher Education (CAPES), FAPERJ, and FAPEPI for partially funding this project.
Author information
Authors and Affiliations
Contributions
NCC, RRS, and AT conceived the project. DOC and LAO carried out Monte Carlo simulations of the Potts model under the guidance of NCC and RRS. The codes and the results for PCA and k-means were implemented/obtained by DOC, LAO, and JPL, while AT implemented the codes and obtained results for the TDA and UMAP ones. AT and NCC wrote the manuscript, and all authors participated in the discussions during the writing process.
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tirelli, A., Carvalho, D.O., Oliveira, L.A. et al. Unsupervised machine learning approaches to the q-state Potts model. Eur. Phys. J. B 95, 189 (2022). https://doi.org/10.1140/epjb/s10051-022-00453-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjb/s10051-022-00453-3