Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Supersymmetry and dark matter in light of LHC 2010 and XENON100 data

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We make frequentist analyses of the CMSSM, NUHM1, VCMSSM and mSUGRA parameter spaces taking into account all the public results of searches for supersymmetry using data from the 2010 LHC run and the XENON100 direct search for dark matter scattering. The LHC data set includes ATLAS and CMS searches for \(\mathrm{jets} + {\not}E_{T}\) events (with or without leptons) and for the heavier MSSM Higgs bosons, and the upper limit on BR(B s μ + μ ) including data from LHCb as well as CDF and DØ. The absence of signals in the LHC data favours somewhat heavier mass spectra than in our previous analyses of the CMSSM, NUHM1 and VCMSSM, and somewhat smaller dark matter scattering cross sections, all close to or within the pre-LHC 68% CL ranges, but does not impact significantly the favoured regions of the mSUGRA parameter space. We also discuss the impact of the XENON100 constraint on spin-independent dark matter scattering, stressing the importance of taking into account the uncertainty in the π-nucleon σ term Σ πN , which affects the spin-independent scattering matrix element, and we make predictions for spin-dependent dark matter scattering. Finally, we discuss briefly the potential impact of the updated predictions for sparticle masses in the CMSSM, NUHM1, VCMSSM and mSUGRA on future e + e colliders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)

    Article  ADS  Google Scholar 

  2. O. Buchmueller et al., Eur. Phys. J. C 71, 1634 (2011). arXiv:1102.4585 [hep-ph]

    Article  ADS  Google Scholar 

  3. M. Drees, M.M. Nojiri, Phys. Rev. D 47, 376 (1993). arXiv:hep-ph/9207234

    Article  ADS  Google Scholar 

  4. H. Baer, M. Brhlik, Phys. Rev. D 53, 597 (1996). arXiv:hep-ph/9508321

    ADS  Google Scholar 

  5. H. Baer, M. Brhlik, Phys. Rev. D 57, 567 (1998). arXiv:hep-ph/9706509

    ADS  Google Scholar 

  6. J.R. Ellis, T. Falk, K.A. Olive, M. Schmitt, Phys. Lett. B 388, 97 (1996). arXiv:hep-ph/9607292

    ADS  Google Scholar 

  7. J.R. Ellis, T. Falk, K.A. Olive, M. Schmitt, Phys. Lett. B 413, 355 (1997). arXiv:hep-ph/9705444

    ADS  Google Scholar 

  8. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Schmitt, Phys. Rev. D 58, 095002 (1998). arXiv:hep-ph/9801445

    ADS  Google Scholar 

  9. V.D. Barger, C. Kao, Phys. Rev. D 57, 3131 (1998). arXiv:hep-ph/9704403

    ADS  Google Scholar 

  10. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, Phys. Rev. D 62, 075010 (2000). arXiv:hep-ph/0004169

    ADS  Google Scholar 

  11. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Srednicki, Phys. Lett. B 510, 236 (2001). arXiv:hep-ph/0102098

    ADS  Google Scholar 

  12. V.D. Barger, C. Kao, Phys. Lett. B 518, 117 (2001). arXiv:hep-ph/0106189

    ADS  Google Scholar 

  13. L. Roszkowski, R. Ruiz de Austri, T. Nihei, J. High Energy Phys. 0108, 024 (2001). arXiv:hep-ph/0106334

    Article  ADS  Google Scholar 

  14. A. Djouadi, M. Drees, J.L. Kneur, J. High Energy Phys. 0108, 055 (2001). arXiv:hep-ph/0107316

    Article  ADS  Google Scholar 

  15. U. Chattopadhyay, A. Corsetti, P. Nath, Phys. Rev. D 66, 035003 (2002). arXiv:hep-ph/0201001

    ADS  Google Scholar 

  16. J.R. Ellis, K.A. Olive, Y. Santoso, New J. Phys. 4, 32 (2002). arXiv:hep-ph/0202110

    Article  MathSciNet  ADS  Google Scholar 

  17. H. Baer, C. Balazs, A. Belyaev, J.K. Mizukoshi, X. Tata, Y. Wang, J. High Energy Phys. 0207, 050 (2002). arXiv:hep-ph/0205325

    Article  MathSciNet  ADS  Google Scholar 

  18. R. Arnowitt, B. Dutta, arXiv:hep-ph/0211417

  19. O. Buchmueller et al., Phys. Lett. B 657, 87 (2007). arXiv:0707.3447 [hep-ph]

    ADS  Google Scholar 

  20. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev, X. Tata, Phys. Rev. D 71, 095008 (2005). arXiv:hep-ph/0412059

    ADS  Google Scholar 

  21. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev, X. Tata, J. High Energy Phys. 0507, 065 (2005). hep-ph/0504001

    Article  ADS  Google Scholar 

  22. J.R. Ellis, K.A. Olive, P. Sandick, Phys. Rev. D 78, 075012 (2008). arXiv:0805.2343 [hep-ph]

    ADS  Google Scholar 

  23. O. Buchmueller et al., J. High Energy Phys. 0809, 117 (2008). arXiv:0808.4128 [hep-ph]

    Article  ADS  Google Scholar 

  24. O. Buchmueller et al., Eur. Phys. J. C 64, 391 (2009). arXiv:0907.5568 [hep-ph]

    Article  ADS  Google Scholar 

  25. O. Buchmueller et al., Eur. Phys. J. C 71, 1583 (2011). arXiv:1011.6118 [hep-ph]

    Article  ADS  Google Scholar 

  26. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Lett. B 573, 162 (2003). arXiv:hep-ph/0305212

    ADS  MATH  Google Scholar 

  27. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Rev. D 70, 055005 (2004). arXiv:hep-ph/0405110

    ADS  Google Scholar 

  28. O. Buchmueller et al., Phys. Rev. D 81, 035009 (2010). arXiv:0912.1036 [hep-ph]

    ADS  Google Scholar 

  29. V. Khachatryan et al. (CMS Collaboration), arXiv:1101.1628 [hep-ex]

  30. G. Aad et al. (ATLAS Collaboration), arXiv:1102.2357 [hep-ex]

  31. D. Feldman, K. Freese, P. Nath, B.D. Nelson, G. Peim, arXiv:1102.2548 [hep-ph]

  32. B.C. Allanach, arXiv:1102.3149 [hep-ph]

  33. S. Scopel, S. Choi, N. Fornengo, A. Bottino, arXiv:1102.4033 [hep-ph]

  34. P. Bechtle et al., arXiv:1102.4693 [hep-ph]

  35. B.C. Allanach, T.J. Khoo, C.G. Lester, S.L. Williams, arXiv:1103.0969 [hep-ph]

  36. S. Akula, N. Chen, D. Feldman, M. Liu, Z. Liu, P. Nath, G. Peim, arXiv:1103.1197 [hep-ph]

  37. M.J. Dolan, D. Grellscheid, J. Jaeckel, V.V. Khoze, P. Richardson, arXiv:1104.0585 [hep-ph]

  38. S. Akula, D. Feldman, Z. Liu, P. Nath, G. Peim, arXiv:1103.5061 [hep-ph] (v2)

  39. E.A. Baltz, P. Gondolo, J. High Energy Phys. 0410, 052 (2004). arXiv:hep-ph/0407039

    Article  ADS  Google Scholar 

  40. B.C. Allanach, C.G. Lester, Phys. Rev. D 73, 015013 (2006). arXiv:hep-ph/0507283

    ADS  Google Scholar 

  41. R.R. de Austri, R. Trotta, L. Roszkowski, J. High Energy Phys. 0605, 002 (2006). arXiv:hep-ph/0602028

    Article  Google Scholar 

  42. R. Lafaye, T. Plehn, M. Rauch, D. Zerwas, Eur. Phys. J. C 54, 617 (2008). arXiv:0709.3985 [hep-ph]

    Article  ADS  Google Scholar 

  43. S. Heinemeyer, X. Miao, S. Su, G. Weiglein, J. High Energy Phys. 0808, 087 (2008). arXiv:0805.2359 [hep-ph]

    Article  ADS  Google Scholar 

  44. R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski, R. Ruiz de Austri, J. High Energy Phys. 0812, 024 (2008). arXiv:0809.3792 [hep-ph]

    Article  ADS  Google Scholar 

  45. P. Bechtle, K. Desch, M. Uhlenbrock, P. Wienemann, Eur. Phys. J. C 66, 215 (2010). arXiv:0907.2589 [hep-ph]

    Article  ADS  Google Scholar 

  46. H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983)

    Article  ADS  Google Scholar 

  47. J. Ellis, J. Hagelin, D. Nanopoulos, K. Olive, M. Srednicki, Nucl. Phys. B 238, 453 (1984)

    Article  ADS  Google Scholar 

  48. G. Aad et al. (ATLAS Collaboration), arXiv:1102.5290 [hep-ex]

  49. G. Aad et al. (ATLAS Collaboration), http://cdsweb.cern.ch/record/1345745/files/ATLAS-CONF-2011-064.pdf, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-064/

  50. G. Aad et al. (ATLAS Collaboration), arXiv:1103.4344 [hep-ex]

  51. V. Khachatryan et al. (CMS Collaboration), https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS10011

  52. V. Khachatryan et al. (CMS Collaboration), arXiv:1103.1348 [hep-ex]. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS10004, ...10006, ...10008

  53. G. Aad et al. (ATLAS Collaboration), arXiv:1103.4344, 1103.6208, 1103.6214 [hep-ex], http://cdsweb.cern.ch/record/1338568/files/ATLAS-CONF-2011-039.pdf

  54. G. Aad et al. (ATLAS Collaboration), http://cdsweb.cern.ch/record/1336757/files/ATLAS-CONF-2011-024.pdf

  55. V. Khachatryan et al. (CMS Collaboration), arXiv:1104.1619 [hep-ex]

  56. R. Aaij et al. (LHCb Collaboration), arXiv:1103.2465 [hep-ex]

  57. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100, 101802 (2008). arXiv:0712.1708 [hep-ex], http://www-cdf.fnal.gov/physics/new/bottom/090813.blessed-Bsd2mumu//bsmumupub3.7fb_v01.pdf

    Article  ADS  Google Scholar 

  58. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 693, 539 (2010). arXiv:1006.3469 [hep-ex]

    ADS  Google Scholar 

  59. E. Aprile et al. (XENON100 Collaboration), arXiv:1104.2549 [astro-ph.CO]

  60. M. Farina, M. Kadastik, D. Pappadopulo, J. Pata, M. Raidal, A. Strumia, arXiv:1104.3572 [hep-ph]

  61. S. Profumo, arXiv:1105.5162 [hep-ph]

  62. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, arXiv:1106.1165 [hep-ph]

  63. http://cern.ch/mastercode

  64. B.C. Allanach, Comput. Phys. Commun. 143, 305 (2002). arXiv:hep-ph/0104145

    Article  ADS  MATH  Google Scholar 

  65. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020

    Article  ADS  Google Scholar 

  66. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  67. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320

    Article  ADS  MATH  Google Scholar 

  68. http://www.feynhiggs.de

  69. M. Frank et al., J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/0611326

    Article  ADS  Google Scholar 

  70. G. Isidori, P. Paradisi, Phys. Lett. B 639, 499 (2006). arXiv:hep-ph/0605012

    ADS  Google Scholar 

  71. G. Isidori, F. Mescia, P. Paradisi, D. Temes, Phys. Rev. D 75, 115019 (2007). arXiv:hep-ph/0703035, and references therein

    ADS  Google Scholar 

  72. F. Mahmoudi, Comput. Phys. Commun. 178, 745 (2008). arXiv:0710.2067 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  73. F. Mahmoudi, Comput. Phys. Commun. 180, 1579 (2009). arXiv:0808.3144 [hep-ph]

    Article  ADS  Google Scholar 

  74. D. Eriksson, F. Mahmoudi, O. Stal, J. High Energy Phys. 0811, 035 (2008). arXiv:0808.3551 [hep-ph]

    Article  ADS  Google Scholar 

  75. S. Heinemeyer et al., J. High Energy Phys. 0608, 052 (2006). arXiv:hep-ph/0604147

    Article  ADS  Google Scholar 

  76. S. Heinemeyer, W. Hollik, A.M. Weber, G. Weiglein, J. High Energy Phys. 0804, 039 (2008). arXiv:0710.2972 [hep-ph]

    Article  ADS  Google Scholar 

  77. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 176, 367 (2007). arXiv:hep-ph/0607059

    Article  ADS  MATH  Google Scholar 

  78. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 149, 103 (2002). arXiv:hep-ph/0112278

    Article  ADS  MATH  Google Scholar 

  79. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 174, 577 (2006). arXiv:hep-ph/0405253

    Article  ADS  MATH  Google Scholar 

  80. P. Gondolo et al., New Astron. Rev. 49, 149 (2005)

    Article  ADS  Google Scholar 

  81. P. Gondolo et al., J. Cosmol. Astropart. Phys. 0407, 008 (2004). arXiv:astro-ph/0406204

    Article  ADS  Google Scholar 

  82. P. Skands et al., J. High Energy Phys. 0407, 036 (2004). arXiv:hep-ph/0311123

    Article  ADS  Google Scholar 

  83. B. Allanach et al., Comput. Phys. Commun. 180, 8 (2009). arXiv:0801.0045 [hep-ph]

    Article  ADS  Google Scholar 

  84. V. Khachatryan et al. (CMS Collaboration), http://cdsweb.cern.ch/record/1342547/files/SUS-11-001-pas.pdf

  85. G. Aad et al. (ATLAS Collaboration), https://ATLAS.web.cern.ch/ATLAS/GROUPS/PHYSICS/PAPERS/susy-0lepton_01/

  86. V. Khachatryan et al. (CMS Collaboration), http://cdsweb.cern.ch/record/1343076/files/SUS-10-005-pas.pdf, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

  87. V. Khachatryan et al. (CMS Collaboration), https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG10002/

  88. R.V. Harlander, W.B. Kilgore, Phys. Rev. D 68, 013001 (2003). arXiv:hep-ph/0304035

    ADS  Google Scholar 

  89. D. Asner et al. (The Heavy Flavor Averaging Group), arXiv:1010.1589 [hep-ex], with updates available at http://www.slac.stanford.edu/xorg/hfag/osc/end_2009

  90. A. Bottino, F. Donato, N. Fornengo, S. Scopel, Astropart. Phys. 13, 215 (2000). arXiv:hep-ph/9909228

    Article  ADS  Google Scholar 

  91. E. Accomando, R.L. Arnowitt, B. Dutta, Y. Santoso, Nucl. Phys. B 585, 124 (2000). arXiv:hep-ph/0001019

    Article  ADS  Google Scholar 

  92. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Rev. D 71, 095007 (2005). arXiv:hep-ph/0502001

    Article  ADS  Google Scholar 

  93. J.R. Ellis, K.A. Olive, C. Savage, Phys. Rev. D 77, 065026 (2008). arXiv:0801.3656 [hep-ph]

    ADS  Google Scholar 

  94. J. Gasser, H. Leutwyler, M.E. Sainio, Phys. Lett. B 253, 252 (1991)

    ADS  Google Scholar 

  95. M. Knecht, PiN Newslett. 15, 108 (1999). arXiv:hep-ph/9912443

    Google Scholar 

  96. M.E. Sainio, PiN Newslett. 16, 138 (2002). arXiv:hep-ph/0110413

    Google Scholar 

  97. B. Borasoy, U.G. Meissner, Ann. Phys. 254, 192 (1997). arXiv:hep-ph/9607432

    Article  ADS  Google Scholar 

  98. M.M. Pavan, I.I. Strakovsky, R.L. Workman, R.A. Arndt, PiN Newslett. 16, 110 (2002). arXiv:hep-ph/0111066

    Google Scholar 

  99. M.M. Pavan, private communication (2011), taking into account recent data on pionic Deuterium: see T. Strauch et al., arXiv:1011.2415 [nucl-ex], as interpreted in V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga and D.R. Phillips, arXiv:1003.4444 [nucl-th]

  100. R.D. Young, A.W. Thomas, Phys. Rev. D 81, 014503 (2010). arXiv:0901.3310 [hep-lat]

    Article  ADS  Google Scholar 

  101. J. Giedt, A.W. Thomas, R.D. Young, Phys. Rev. Lett. 103, 201802 (2009). arXiv:0907.4177 [hep-ph]

    Article  ADS  Google Scholar 

  102. R. Barate et al. (ALEPH, DELPHI, L3, OPAL Collaborations and LEP Working Group for Higgs boson searches), Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033

    Google Scholar 

  103. S. Schael et al. (ALEPH, DELPHI, L3, OPAL Collaborations and LEP Working Group for Higgs boson searches), Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042

    Article  ADS  Google Scholar 

  104. E. Behnke et al. (COUPP Collaboration), Phys. Rev. Lett. 106, 021303 (2011). arXiv:1008.3518 [astro-ph.CO]

    Article  ADS  Google Scholar 

  105. S. Desai et al. (SuperKamiokande Collaboration), Phys. Rev. D 70, 083523 (2004)

    ADS  Google Scholar 

  106. R. Abbasi et al. (IceCube Collaboration), Phys. Rev. Lett. 102, 201302 (2009)

    Article  ADS  Google Scholar 

  107. J. Ellis, K.A. Olive, C. Savage, V.C. Spanos, Phys. Rev. D 81, 085004 (2010). arXiv:0912.3137 [hep-ph]

    ADS  Google Scholar 

  108. J. Ellis, K.A. Olive, C. Savage, V.C. Spanos, Phys. Rev. D 83, 085023 (2011). arXiv:1102.1988 [hep-ph]

    ADS  Google Scholar 

  109. T.J. LeCompte, S.P. Martin, arXiv:1105.4304 [hep-ph]

  110. J. Fan, M. Reece, J.T. Ruderman, arXiv:1105.5135 [hep-ph]

  111. G. Aad et al. (ATLAS Collaboration), http://cdsweb.cern.ch/record/1356194/files/ATLAS-CONF-2011-086.pdf

  112. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-086/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Olive.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchmueller, O., Cavanaugh, R., Colling, D. et al. Supersymmetry and dark matter in light of LHC 2010 and XENON100 data. Eur. Phys. J. C 71, 1722 (2011). https://doi.org/10.1140/epjc/s10052-011-1722-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1722-2

Keywords