Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards flavour-diffusion coefficient and electrical conductivity without ultraviolet contamination

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

By subtracting from a recent lattice measurement of the thermal vector-current correlator the known 5-loop vacuum contribution, we demonstrate that the remainder is small and shows no visible short-distance divergence. It can therefore in principle be subjected to model-independent analytic continuation. Testing a particular implementation, we obtain estimates for the flavour-diffusion coefficient (2πTD≳0.8) and electrical conductivity which are significantly smaller than previous results. Although systematic errors remain beyond control at present, some aspects of our approach could be of a wider applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.I. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  2. H.B. Meyer, Transport properties of the quark–gluon plasma: a lattice QCD perspective. Eur. Phys. J. A 47, 86 (2011). 1104.3708

    Article  ADS  Google Scholar 

  3. S. Gupta, The electrical conductivity and soft photon emissivity of the QCD plasma. Phys. Lett. B 597, 57 (2004). hep-lat/0301006

    Article  ADS  Google Scholar 

  4. G. Aarts, C. Allton, J. Foley, S. Hands, S. Kim, Spectral functions at small energies and the electrical conductivity in hot, quenched lattice QCD. Phys. Rev. Lett. 99, 022002 (2007). hep-lat/0703008

    Article  ADS  Google Scholar 

  5. H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann, W. Soeldner, Thermal dilepton rate and electrical conductivity: An analysis of vector current correlation functions in quenched lattice QCD. Phys. Rev. D 83, 034504 (2011). 1012.4963

    Article  ADS  Google Scholar 

  6. G. Cuniberti, E. De Micheli, G.A. Viano, Reconstructing the thermal Green functions at real times from those at imaginary times. Commun. Math. Phys. 216, 59 (2001). cond-mat/0109175

    Article  ADS  MATH  Google Scholar 

  7. Y. Burnier, M. Laine, L. Mether, A test on analytic continuation of thermal imaginary-time data. Eur. Phys. J. C 71, 1619 (2011). 1101.5534

    Article  ADS  Google Scholar 

  8. S. Caron-Huot, Asymptotics of thermal spectral functions. Phys. Rev. D 79, 125009 (2009). 0903.3958

    Article  ADS  Google Scholar 

  9. P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Hadronic Z- and τ-decays in order \(\alpha_{s}^{4}\). Phys. Rev. Lett. 101, 012002 (2008). 0801.1821

    Article  ADS  Google Scholar 

  10. J. Casalderrey-Solana, D. Teaney, Heavy quark diffusion in strongly coupled \(\mathcal{N}=4\) Yang-Mills. Phys. Rev. D 74, 085012 (2006). hep-ph/0605199

    Article  ADS  Google Scholar 

  11. S. Caron-Huot, M. Laine, G.D. Moore, A way to estimate the heavy quark thermalization rate from the lattice. J. High Energy Phys. 04, 053 (2009). 0901.1195

    Article  ADS  Google Scholar 

  12. A. Francis, O. Kaczmarek, M. Laine, J. Langelage, Towards a non-perturbative measurement of the heavy quark momentum diffusion coefficient, in PoS Lattice 2011 (2011), 202. 1109.3941

    Google Scholar 

  13. D. Banerjee, S. Datta, R. Gavai, P. Majumdar, Heavy quark momentum diffusion coefficient from lattice QCD. Phys. Rev. D 85, 014510 (2012). 1109.5738

    Article  ADS  Google Scholar 

  14. F. Karsch, E. Laermann, P. Petreczky, S. Stickan, Infinite temperature limit of meson spectral functions calculated on the lattice. Phys. Rev. D 68, 014504 (2003). hep-lat/0303017

    Article  ADS  Google Scholar 

  15. A. Vuorinen, Quark number susceptibilities of hot QCD up to g 6lng. Phys. Rev. D 67, 074032 (2003). hep-ph/0212283

    Article  ADS  Google Scholar 

  16. Y. Burnier, M. Laine, J. Langelage, L. Mether, Colour-electric spectral function at next-to-leading order. J. High Energy Phys. 08, 094 (2010). 1006.0867

    Article  ADS  Google Scholar 

  17. M. Laine, A. Vuorinen, Y. Zhu, Next-to-leading order thermal spectral functions in the perturbative domain. J. High Energy Phys. 09, 084 (2011). 1108.1259

    Article  ADS  Google Scholar 

  18. R. Baier, B. Pire, D. Schiff, Dilepton production at finite temperature: Perturbative treatment at order α s . Phys. Rev. D 38, 2814 (1988)

    Article  ADS  Google Scholar 

  19. Y. Gabellini, T. Grandou, D. Poizat, Electron-positron annihilation in thermal QCD. Ann. Phys. 202, 436 (1990)

    Article  ADS  Google Scholar 

  20. T. Altherr, P. Aurenche, Finite temperature QCD corrections to lepton-pair formation in a quark-gluon plasma. Z. Phys. C 45, 99 (1989)

    Article  Google Scholar 

  21. G. Aarts, J.M. Martínez Resco, Transport coefficients, spectral functions and the lattice. J. High Energy Phys. 04, 053 (2002). hep-ph/0203177

    Article  ADS  Google Scholar 

  22. P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, R(s) and hadronic τ-decays in order \(\alpha^{4}_{s}\): technical aspects. Nucl. Phys. B, Proc. Suppl. 189, 49 (2009). 0906.2987

    Article  ADS  Google Scholar 

  23. T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, The four-loop β-function in quantum chromodynamics. Phys. Lett. B 400, 379 (1997). hep-ph/9701390

    Article  ADS  Google Scholar 

  24. P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Adler Function, DIS sum rules and Crewther relations. Nucl. Phys. B, Proc. Suppl. 205–206, 237 (2010). 1007.0478

    Article  Google Scholar 

  25. S. Borsanyi, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Lattice SU(3) thermodynamics and the onset of perturbative behaviour. 1104.0013

  26. W. Florkowski, B.L. Friman, Spatial dependence of the finite temperature meson correlation function. Z. Phys., A Hadrons Nucl. 347, 271 (1994)

    Article  Google Scholar 

  27. P.B. Arnold, L.G. Yaffe, Effective theories for real-time correlations in hot plasmas. Phys. Rev. D 57, 1178 (1998). hep-ph/9709449

    Article  ADS  Google Scholar 

  28. M. Laine, Y. Schröder, Two-loop QCD gauge coupling at high temperatures. J. High Energy Phys. 03, 067 (2005). hep-ph/0503061

    Article  ADS  Google Scholar 

  29. A. Francis, O. Kaczmarek, On the temperature dependence of the electrical conductivity in hot quenched lattice QCD. 1112.4802

  30. P.B. Arnold, G.D. Moore, L.G. Yaffe, Transport coefficients in high temperature gauge theories. 1. Leading log results. J. High Energy Phys. 11, 001 (2000). hep-ph/0010177

    Article  ADS  Google Scholar 

  31. P.B. Arnold, G.D. Moore, L.G. Yaffe, Transport coefficients in high temperature gauge theories. 2. Beyond leading log. J. High Energy Phys. 05, 051 (2003). hep-ph/0302165

    Article  MathSciNet  ADS  Google Scholar 

  32. P. Kovtun, D.T. Son, A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons. J. High Energy Phys. 10, 064 (2003). hep-th/0309213

    Article  MathSciNet  ADS  Google Scholar 

  33. G.D. Moore, J.-M. Robert, Dileptons, spectral weights, and conductivity in the quark-gluon plasma. hep-ph/0607172

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Laine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnier, Y., Laine, M. Towards flavour-diffusion coefficient and electrical conductivity without ultraviolet contamination. Eur. Phys. J. C 72, 1902 (2012). https://doi.org/10.1140/epjc/s10052-012-1902-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1902-8

Keywords