Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Contribution of vector resonances to the \(\bar{B}_{d}^{0}\to\bar {K}^{*0}\mu^{+}\mu^{-}\) decay

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The fully differential angular distribution for the rare flavor-changing neutral current decay \(\bar{B}_{d}^{0} \to\bar{K}^{*0} (\to K^{-} \pi^{+}) \mu^{+}\mu^{-} \) is studied. The emphasis is placed on accurate treatment of the contribution from the processes \(\bar{B}_{d}^{0} \to\bar{K}^{*0} (\to K^{-} \pi^{+}) V \) with intermediate vector resonances V=ρ(770),ω(782),ϕ(1020),J/ψ,ψ(2S),… decaying into the μ + μ pair. The dilepton invariant-mass dependence of the branching ratio, longitudinal polarization fraction f L of the \(\bar{K}^{*0}\) meson, and forward–backward asymmetry A FB is calculated and compared with data from Belle, CDF and LHCb. It is shown that inclusion of the resonance contribution may considerably modify the branching ratio, calculated in the SM without resonances, even in the invariant-mass region far from the so-called charmonia cuts applied in the experimental analyses. This conclusion crucially depends on values of the unknown phases of the B 0K ∗0 J/ψ and B 0K ∗0 ψ(2S) decay amplitudes with zero helicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This means the narrow-width approximation for the \(\bar{K}^{*0}\) propagator: \((k^{2} - m_{K^{*}}^{2} + im_{K^{*}} \varGamma_{K^{*}})^{-1} \approx-i \pi\delta(k^{2} - m_{K^{*}}^{2}) \).

References

  1. M. Antonelli et al., Phys. Rep. 494, 197 (2010)

    Article  ADS  Google Scholar 

  2. D. Melikhov, N. Nikitin, S. Simula, Phys. Lett. B 442, 381 (1998)

    Article  ADS  Google Scholar 

  3. F. Krüger, L.M. Sehgal, N. Sinha, R. Sinha, Phys. Rev. D 61, 114028 (2000) [Erratum: Phys. Rev. D 63, 019901 (2001)]

    Article  ADS  Google Scholar 

  4. A. Ali, P. Ball, L.T. Handoko, G. Hiller, Phys. Rev. D 61, 074024 (2000)

    Article  ADS  Google Scholar 

  5. C.S. Kim, Y.G. Kim, C.-D. Lu, T. Morozumi, Phys. Rev. D 62, 034013 (2000)

    Article  ADS  Google Scholar 

  6. A. Ali, E. Lunghi, C. Greub, G. Hiller, Phys. Rev. D 66, 034002 (2002)

    Article  ADS  Google Scholar 

  7. F. Krüger, J. Matias, Phys. Rev. D 71, 094009 (2005)

    Article  ADS  Google Scholar 

  8. E. Lunghi, J. Matias, J. High Energy Phys. 0704, 058 (2007)

    Article  ADS  Google Scholar 

  9. C. Bobeth, G. Hiller, G. Piranishvili, J. High Energy Phys. 0807, 106 (2008)

    Article  ADS  Google Scholar 

  10. C. Bobeth, G. Hiller, D. van Dyk, J. High Energy Phys. 1007, 098 (2010)

    Article  ADS  Google Scholar 

  11. C. Bobeth, G. Hiller, D. van Dyk, J. High Energy Phys. 1107, 067 (2011)

    Article  ADS  Google Scholar 

  12. U. Egede, T. Hurth, J. Matias, M. Ramon, W. Reece, J. High Energy Phys. 0811, 032 (2008)

    Article  ADS  Google Scholar 

  13. W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub, M. Wick, J. High Energy Phys. 0901, 019 (2009)

    Article  ADS  Google Scholar 

  14. A.Y. Korchin, V.A. Kovalchuk, Phys. Rev. D 82, 034013 (2010)

    Article  ADS  Google Scholar 

  15. U. Egede, T. Hurth, J. Matias, M. Ramon, W. Reece, J. High Energy Phys. 1010, 056 (2010)

    Article  ADS  Google Scholar 

  16. E. Lunghi, A. Soni, J. High Energy Phys. 1011, 121 (2010)

    Article  ADS  Google Scholar 

  17. A. Bharucha, W. Reece, Eur. Phys. J. C 69, 623 (2010)

    Article  ADS  Google Scholar 

  18. A.K. Alok, A. Dighe, D. Ghosh, D. London, J. Matias, M. Nagashima, A. Szynkman, J. High Energy Phys. 1002, 053 (2010)

    Article  ADS  Google Scholar 

  19. A.K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh, D. London, S.U. Sankar, J. High Energy Phys. 1111, 121 (2011)

    Article  ADS  Google Scholar 

  20. A.K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh, D. London, J. High Energy Phys. 1111, 122 (2011)

    Article  ADS  Google Scholar 

  21. S. Descotes-Genon, D. Ghosh, J. Matias, M. Ramon, J. High Energy Phys. 1106, 099 (2011)

    Article  ADS  Google Scholar 

  22. D. Becirevic, E. Schneider, Nucl. Phys. B 854, 321 (2012)

    Article  ADS  MATH  Google Scholar 

  23. W. Altmannshofer, P. Paradisi, D.M. Straub, arXiv:1111.1257 [hep-ph]

  24. A.Y. Korchin, V.A. Kovalchuk, arXiv:1111.4093 [hep-ph]

  25. J. Matias, F. Mescia, M. Ramon, J. Virto, arXiv:1202.4266 [hep-ph]

  26. D. Das, R. Sinha, arXiv:1202.5105 [hep-ph]

  27. D. Das, R. Sinha, arXiv:1205.1438 [hep-ph]

  28. M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999)

    Article  ADS  Google Scholar 

  29. M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Nucl. Phys. B 591, 313 (2000)

    Article  ADS  Google Scholar 

  30. M. Beneke, T. Feldmann, D. Seidel, Nucl. Phys. B 612, 25 (2001)

    Article  ADS  Google Scholar 

  31. M. Beneke, T. Feldmann, D. Seidel, Eur. Phys. J. C 41, 173 (2005)

    Article  ADS  Google Scholar 

  32. B. Grinstein, D. Pirjol, Phys. Rev. D 70, 114005 (2004)

    Article  ADS  Google Scholar 

  33. M. Beylich, G. Buchalla, Th. Feldmann, Eur. Phys. J. C 71, 1635 (2011)

    Article  ADS  Google Scholar 

  34. A. Khodjamirian, Th. Mannel, A.A. Pivovarov, Y.-M. Wang, J. High Energy Phys. 1009, 089 (2010)

    Article  ADS  Google Scholar 

  35. N.G. Deshpande, J. Trampetic, K. Panose, Phys. Rev. D 39, 1461 (1989)

    Article  ADS  Google Scholar 

  36. C.S. Lim, T. Morozumi, A.I. Sanda, Phys. Lett. B 218, 343 (1989)

    Article  ADS  Google Scholar 

  37. A. Ali, T. Mannel, T. Morozumi, Phys. Lett. B 273, 505 (1991)

    Article  ADS  Google Scholar 

  38. Z. Ligeti, M.B. Wise, Phys. Rev. D 53, 4937 (1996)

    Article  ADS  Google Scholar 

  39. Z. Ligeti, I.W. Stewart, M.B. Wise, Phys. Lett. B 420, 359 (1998)

    Article  ADS  Google Scholar 

  40. F. Krüger, L.M. Sehgal, Phys. Lett. B 380, 199 (1996)

    Article  ADS  Google Scholar 

  41. M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Eur. Phys. J. C 61, 439 (2009)

    Article  ADS  Google Scholar 

  42. G. Valencia, Phys. Rev. D 39, 3339 (1989)

    Article  ADS  Google Scholar 

  43. I. Dunietz, H. Quinn, A. Snyder, W. Toki, H.J. Lipkin, Phys. Rev. D 43, 2193 (1991)

    Article  ADS  Google Scholar 

  44. A.S. Dighe, I. Dunietz, H.J. Lipkin, J.L. Rosner, Phys. Lett. B 369, 144 (1996)

    Article  ADS  Google Scholar 

  45. B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 98, 051801 (2007)

    Article  ADS  Google Scholar 

  46. B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 78, 092008 (2008)

    Article  ADS  Google Scholar 

  47. P. Ball, R. Zwicky, Phys. Rev. D 71, 014029 (2005)

    Article  ADS  Google Scholar 

  48. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963)

    Article  ADS  Google Scholar 

  49. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)

    Article  ADS  Google Scholar 

  50. R.P. Feynman, Photon–Hadron Interactions (Benjamin, Reading, 1972)

    Google Scholar 

  51. F. Klingl, N. Kaiser, W. Weise, Z. Phys. A 356, 193 (1996)

    ADS  Google Scholar 

  52. H.B. O’Connell, B.C. Pearce, A.W. Thomas, A.G. Williams, Prog. Part. Nucl. Phys. 39, 201 (1997)

    Article  Google Scholar 

  53. G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989)

    Article  ADS  Google Scholar 

  54. S. Eidelman, S. Ivashyn, A. Korchin, G. Pancheri, O. Shekhovtsova, Eur. Phys. J. C 69, 103 (2010)

    Article  ADS  Google Scholar 

  55. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  56. C.H. Chen, arXiv:hep-ph/0601019

  57. J.T. Wei et al. (BELLE Collaboration), Phys. Rev. Lett. 103, 171801 (2009)

    Article  ADS  Google Scholar 

  58. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 107, 201802 (2011)

    Article  ADS  Google Scholar 

  59. T. Aaltonen et al. (CDF Collaboration), arXiv:1108.0695 [hep-ex]

  60. R. Aaij et al. (LHCb Collaboration), arXiv:1112.3515 [hep-ex]

  61. G. Buchalla, G. Isidori, S.-J. Rey, Nucl. Phys. B 511, 594 (1998)

    Article  ADS  Google Scholar 

  62. T. Hurth, M. Nakao, Annu. Rev. Nucl. Part. Sci. 60, 645 (2010)

    Article  ADS  Google Scholar 

  63. B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 93, 081802 (2004)

    Article  ADS  Google Scholar 

  64. M. Iwasaki et al. (BELLE Collaboration), Phys. Rev. D 72, 092005 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Yu. Korchin.

Appendix: Amplitudes of B→K ∗ V decays

Appendix: Amplitudes of BK V decays

An important ingredient of the resonant contribution is amplitude of the decay of B meson into two vector mesons, B(p)→V 1(q,ϵ 1)+V 2(k,ϵ 2), with on-mass-shell meson V 2 (\(k^{2} = m_{2}^{2}\)) and off-mass-shell meson V 1 (\(q^{2} \ne m_{1}^{2}\)). For the case of two on-mass-shell final mesons one can write the amplitude in the form [42]

(30)

in terms of three invariant amplitudes S 1, S 2 and S 3, V CKM is a CKM factor. The quantities S 1, S 2 and S 3 may be complex and involve two types of phase, CP-conserving strong phases and CP-violating weak phases. In general, the invariant amplitudes are a sum of several interfering amplitudes, S 1j , S 2j and S 3j , respectively. Then the phase structure of S 1, S 2 and S 3 is

$$ S_k=\sum_{j}|S_{kj}| e^{i \varphi_{kj}}e^{i \delta_{kj}} \quad (k=1,2,3 ) , $$
(31)

where φ 1j , φ 2j , and φ 3j are the CP-violating weak phases and δ 1j , δ 2j , and δ 3j are the CP-conserving strong phases.

Using CPT invariance, we can represent the matrix element for the charge-conjugate decay \(\bar{B}(p) \to\bar{V}_{1}(q,\epsilon_{1})\* \bar{V}_{2}(k,\epsilon_{2})\) as

(32)

where \(\bar{S}_{1}\), \(\bar{S}_{2}\), and \(\bar{S}_{3}\) can be derived from S 1, S 2, and S 3 by reversing the sign of the CP-violating phase. Note that if the BV 1 V 2 decay is invariant under the CP symmetry, then \(\bar{S}_{1}=S_{1}\), \(\bar{S}_{2}=S_{2}\), and \(\bar{S}_{3}=S_{3}\). On the other hand, if all CP-conserving phases of invariant amplitudes are equal to zero, then \(\bar{S}_{1}=S^{*}_{1}\), \(\bar{S}_{2}=S^{*}_{2}\), and \(\bar{S}_{3}=S^{*}_{3}\).

The helicity amplitudes in terms of three invariant amplitudes, S 1, S 2, and S 3 are

(33)

From the decomposition Eq. (33) one finds the following relations between the helicity amplitudes and the invariant amplitudes S 1, S 2, S 3:

$$ \begin{aligned} \lefteqn{H_0 = - \frac{1}{2 \hat{m}_1 \hat{m}_2} \biggl( \bigl(1- \hat{m}_1^2-\hat{m}_2^2\bigr) S_1 + \frac{S_2}{2} \lambda\bigl(1,\hat{m}_1^2, \hat{m}_2^2\bigr) \biggr), } \\ \lefteqn{H_\pm= S_1 \pm\frac{S_3}{2} \sqrt {\lambda\bigl(1,\hat{m}_1^2, \hat{m}_2^2\bigr)} ,} \end{aligned} $$
(34)

with \(\lambda(1,\hat{m}_{1}^{2},\hat{m}_{2}^{2}) \equiv(1-\hat{m}_{1}^{2})^{2} - 2\hat{m}_{2}^{2}(1+\hat{m}_{1}^{2}) +\hat{m}_{2}^{4}\) and \(\hat{m}_{1(2)} \equiv m_{1(2)}/m_{B}\).

Note that the polarized decay amplitudes can be expressed in several different but equivalent bases. For example, the helicity amplitudes can be related to the spin amplitudes in the transversity basis (A 0,A ,A ) defined in terms of the linear polarization of the vector mesons via:

$$A_0 = H_0 ,\qquad A_\parallel= \frac{H_+ + H_-}{\sqrt{2}} , \qquad A_\perp= \frac{H_+ - H_-}{\sqrt{2}} , $$

A 0, A , A are related to S 1, S 2 and S 3 of Eq. (30) via

$$ \begin{aligned} \lefteqn{A_0 = -\frac{1}{2 \hat{m}_1 \hat{m}_2} \biggl( \bigl(1- \hat{m}_1^2-\hat{m}_2^2\bigr) S_1 + \frac{S_2}{2} \lambda\bigl(1,\hat{m}_1^2, \hat{m}_2^2\bigr) \biggr),} \\ \lefteqn{A_\parallel= \sqrt{2} S_1 ,\qquad A_\perp= \sqrt{\frac{\lambda(1,\hat{m}_1^2,\hat{m}_2^2)}{2}} S_3 .} \end{aligned} $$
(35)

The amplitude \(\bar{A}_{\lambda}\) (λ=0,∥,⊥) are related to the invariant amplitudes of the \(\bar{B} \to\bar{V}_{1} \bar{V}_{2}\) decay by the formulas

$$ \begin{aligned} \lefteqn{\bar{A}_0 = - \frac{1}{2 \hat{m}_1 \hat{m}_2} \biggl( \bigl(1- \hat{m}_1^2-\hat{m}_2^2\bigr) \bar{S}_1 + \frac{\bar{S_2}}{2} \lambda\bigl(1,\hat{m}_1^2, \hat{m}_2^2\bigr) \biggr) ,} \\ \lefteqn{\bar{A}_\parallel= \sqrt{2} \bar{S}_1 , \qquad\bar{A}_\perp=- \sqrt{\frac{\lambda(1,\hat{m}_1^2,\hat{m}_2^2)}{2}} \bar{S}_3 .} \end{aligned} $$
(36)

If the BV 1 V 2 decay is invariant under CP transformation, then \(\bar{A}_{0}=A_{0}\), \(\bar{A}_{\|}=A_{\|}\), and \(\bar{A}_{\perp}=-A_{\perp}\).

The decay width is expresses as follows:

(37)

The matrix element for the \(B_{d}^{0}\to K^{*0} V\) decay, where V=ρ 0,ω,ϕ,J/ψ(1S),ψ(2S),… mesons, we can represent as

(38)

Next, we define the normalized amplitudes:

$$ \begin{aligned} \lefteqn{h_\lambda\equiv \frac{A_\lambda}{\sqrt{\sum_{\lambda^\prime} |A_{\lambda^\prime}|^2}} ,} \\ \lefteqn{\sum_\lambda |h_\lambda|^2 = 1 \quad\bigl(\lambda, \lambda^\prime= 0, \parallel, \perp\bigr) .} \end{aligned} $$
(39)

By putting m 1=m V , \(m_{2} = m_{K^{*}}\) and using (37), (39) we obtain the relation between the amplitudes h λ and A λ of the process under study \(B_{d}^{0} \to K^{*0} V\) for any vector meson V=ρ 0,ω,ϕ,J/ψ(1S),ψ(2S),…:

(40)

where BR(…) is the branching ratio of \(B_{d}^{0} \to K^{*0} V\) decay and τ B is the lifetime of a B meson.

Solving Eqs. (35) we find the scalars S 1,S 2 and S 3, and then extend the helicity amplitudes \(A_{\lambda}^{V}\) off the mass shell of the meson V, i.e. for \(q^{2} \ne m_{V}^{2}\). We introduce the phases \(\delta_{\lambda}^{V} \equiv\mathrm{arg}(h_{\lambda}^{V})\), \(\delta_{i}^{V} \equiv\mathrm{arg}(S_{i}^{V})\), where i=1,2,3. Then we have

(41)

The branching ratio and decay amplitudes are given in Table 5.

Table 5 Branching ratio [55], and decay amplitudes for \({ B}_{d}^{0}\to{K}^{*0} \rho^{0}\) [56], \({B}_{d}^{0}\to{ K}^{*0} \omega\) [56] and \({ B}_{d}^{0}\to{ K}^{*0} \phi\), \({ B}_{d}^{0}\to{ K}^{*0} J/\psi\), \({ B}_{d}^{0}\to{ K}^{*0} \psi(2S)\) [55]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korchin, A.Y., Kovalchuk, V.A. Contribution of vector resonances to the \(\bar{B}_{d}^{0}\to\bar {K}^{*0}\mu^{+}\mu^{-}\) decay. Eur. Phys. J. C 72, 2155 (2012). https://doi.org/10.1140/epjc/s10052-012-2155-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2155-2

Keywords