Abstract
The fully differential angular distribution for the rare flavor-changing neutral current decay \(\bar{B}_{d}^{0} \to\bar{K}^{*0} (\to K^{-} \pi^{+}) \mu^{+}\mu^{-} \) is studied. The emphasis is placed on accurate treatment of the contribution from the processes \(\bar{B}_{d}^{0} \to\bar{K}^{*0} (\to K^{-} \pi^{+}) V \) with intermediate vector resonances V=ρ(770),ω(782),ϕ(1020),J/ψ,ψ(2S),… decaying into the μ + μ − pair. The dilepton invariant-mass dependence of the branching ratio, longitudinal polarization fraction f L of the \(\bar{K}^{*0}\) meson, and forward–backward asymmetry A FB is calculated and compared with data from Belle, CDF and LHCb. It is shown that inclusion of the resonance contribution may considerably modify the branching ratio, calculated in the SM without resonances, even in the invariant-mass region far from the so-called charmonia cuts applied in the experimental analyses. This conclusion crucially depends on values of the unknown phases of the B 0→K ∗0 J/ψ and B 0→K ∗0 ψ(2S) decay amplitudes with zero helicity.
Similar content being viewed by others
Notes
This means the narrow-width approximation for the \(\bar{K}^{*0}\) propagator: \((k^{2} - m_{K^{*}}^{2} + im_{K^{*}} \varGamma_{K^{*}})^{-1} \approx-i \pi\delta(k^{2} - m_{K^{*}}^{2}) \).
References
M. Antonelli et al., Phys. Rep. 494, 197 (2010)
D. Melikhov, N. Nikitin, S. Simula, Phys. Lett. B 442, 381 (1998)
F. Krüger, L.M. Sehgal, N. Sinha, R. Sinha, Phys. Rev. D 61, 114028 (2000) [Erratum: Phys. Rev. D 63, 019901 (2001)]
A. Ali, P. Ball, L.T. Handoko, G. Hiller, Phys. Rev. D 61, 074024 (2000)
C.S. Kim, Y.G. Kim, C.-D. Lu, T. Morozumi, Phys. Rev. D 62, 034013 (2000)
A. Ali, E. Lunghi, C. Greub, G. Hiller, Phys. Rev. D 66, 034002 (2002)
F. Krüger, J. Matias, Phys. Rev. D 71, 094009 (2005)
E. Lunghi, J. Matias, J. High Energy Phys. 0704, 058 (2007)
C. Bobeth, G. Hiller, G. Piranishvili, J. High Energy Phys. 0807, 106 (2008)
C. Bobeth, G. Hiller, D. van Dyk, J. High Energy Phys. 1007, 098 (2010)
C. Bobeth, G. Hiller, D. van Dyk, J. High Energy Phys. 1107, 067 (2011)
U. Egede, T. Hurth, J. Matias, M. Ramon, W. Reece, J. High Energy Phys. 0811, 032 (2008)
W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub, M. Wick, J. High Energy Phys. 0901, 019 (2009)
A.Y. Korchin, V.A. Kovalchuk, Phys. Rev. D 82, 034013 (2010)
U. Egede, T. Hurth, J. Matias, M. Ramon, W. Reece, J. High Energy Phys. 1010, 056 (2010)
E. Lunghi, A. Soni, J. High Energy Phys. 1011, 121 (2010)
A. Bharucha, W. Reece, Eur. Phys. J. C 69, 623 (2010)
A.K. Alok, A. Dighe, D. Ghosh, D. London, J. Matias, M. Nagashima, A. Szynkman, J. High Energy Phys. 1002, 053 (2010)
A.K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh, D. London, S.U. Sankar, J. High Energy Phys. 1111, 121 (2011)
A.K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh, D. London, J. High Energy Phys. 1111, 122 (2011)
S. Descotes-Genon, D. Ghosh, J. Matias, M. Ramon, J. High Energy Phys. 1106, 099 (2011)
D. Becirevic, E. Schneider, Nucl. Phys. B 854, 321 (2012)
W. Altmannshofer, P. Paradisi, D.M. Straub, arXiv:1111.1257 [hep-ph]
A.Y. Korchin, V.A. Kovalchuk, arXiv:1111.4093 [hep-ph]
J. Matias, F. Mescia, M. Ramon, J. Virto, arXiv:1202.4266 [hep-ph]
D. Das, R. Sinha, arXiv:1202.5105 [hep-ph]
D. Das, R. Sinha, arXiv:1205.1438 [hep-ph]
M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999)
M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Nucl. Phys. B 591, 313 (2000)
M. Beneke, T. Feldmann, D. Seidel, Nucl. Phys. B 612, 25 (2001)
M. Beneke, T. Feldmann, D. Seidel, Eur. Phys. J. C 41, 173 (2005)
B. Grinstein, D. Pirjol, Phys. Rev. D 70, 114005 (2004)
M. Beylich, G. Buchalla, Th. Feldmann, Eur. Phys. J. C 71, 1635 (2011)
A. Khodjamirian, Th. Mannel, A.A. Pivovarov, Y.-M. Wang, J. High Energy Phys. 1009, 089 (2010)
N.G. Deshpande, J. Trampetic, K. Panose, Phys. Rev. D 39, 1461 (1989)
C.S. Lim, T. Morozumi, A.I. Sanda, Phys. Lett. B 218, 343 (1989)
A. Ali, T. Mannel, T. Morozumi, Phys. Lett. B 273, 505 (1991)
Z. Ligeti, M.B. Wise, Phys. Rev. D 53, 4937 (1996)
Z. Ligeti, I.W. Stewart, M.B. Wise, Phys. Lett. B 420, 359 (1998)
F. Krüger, L.M. Sehgal, Phys. Lett. B 380, 199 (1996)
M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Eur. Phys. J. C 61, 439 (2009)
G. Valencia, Phys. Rev. D 39, 3339 (1989)
I. Dunietz, H. Quinn, A. Snyder, W. Toki, H.J. Lipkin, Phys. Rev. D 43, 2193 (1991)
A.S. Dighe, I. Dunietz, H.J. Lipkin, J.L. Rosner, Phys. Lett. B 369, 144 (1996)
B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 98, 051801 (2007)
B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 78, 092008 (2008)
P. Ball, R. Zwicky, Phys. Rev. D 71, 014029 (2005)
N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963)
M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)
R.P. Feynman, Photon–Hadron Interactions (Benjamin, Reading, 1972)
F. Klingl, N. Kaiser, W. Weise, Z. Phys. A 356, 193 (1996)
H.B. O’Connell, B.C. Pearce, A.W. Thomas, A.G. Williams, Prog. Part. Nucl. Phys. 39, 201 (1997)
G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989)
S. Eidelman, S. Ivashyn, A. Korchin, G. Pancheri, O. Shekhovtsova, Eur. Phys. J. C 69, 103 (2010)
K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)
C.H. Chen, arXiv:hep-ph/0601019
J.T. Wei et al. (BELLE Collaboration), Phys. Rev. Lett. 103, 171801 (2009)
T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 107, 201802 (2011)
T. Aaltonen et al. (CDF Collaboration), arXiv:1108.0695 [hep-ex]
R. Aaij et al. (LHCb Collaboration), arXiv:1112.3515 [hep-ex]
G. Buchalla, G. Isidori, S.-J. Rey, Nucl. Phys. B 511, 594 (1998)
T. Hurth, M. Nakao, Annu. Rev. Nucl. Part. Sci. 60, 645 (2010)
B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 93, 081802 (2004)
M. Iwasaki et al. (BELLE Collaboration), Phys. Rev. D 72, 092005 (2005)
Author information
Authors and Affiliations
Corresponding author
Appendix: Amplitudes of B→K ∗ V decays
Appendix: Amplitudes of B→K ∗ V decays
An important ingredient of the resonant contribution is amplitude of the decay of B meson into two vector mesons, B(p)→V 1(q,ϵ 1)+V 2(k,ϵ 2), with on-mass-shell meson V 2 (\(k^{2} = m_{2}^{2}\)) and off-mass-shell meson V 1 (\(q^{2} \ne m_{1}^{2}\)). For the case of two on-mass-shell final mesons one can write the amplitude in the form [42]
in terms of three invariant amplitudes S 1, S 2 and S 3, V CKM is a CKM factor. The quantities S 1, S 2 and S 3 may be complex and involve two types of phase, CP-conserving strong phases and CP-violating weak phases. In general, the invariant amplitudes are a sum of several interfering amplitudes, S 1j , S 2j and S 3j , respectively. Then the phase structure of S 1, S 2 and S 3 is
where φ 1j , φ 2j , and φ 3j are the CP-violating weak phases and δ 1j , δ 2j , and δ 3j are the CP-conserving strong phases.
Using CPT invariance, we can represent the matrix element for the charge-conjugate decay \(\bar{B}(p) \to\bar{V}_{1}(q,\epsilon_{1})\* \bar{V}_{2}(k,\epsilon_{2})\) as
where \(\bar{S}_{1}\), \(\bar{S}_{2}\), and \(\bar{S}_{3}\) can be derived from S 1, S 2, and S 3 by reversing the sign of the CP-violating phase. Note that if the B→V 1 V 2 decay is invariant under the CP symmetry, then \(\bar{S}_{1}=S_{1}\), \(\bar{S}_{2}=S_{2}\), and \(\bar{S}_{3}=S_{3}\). On the other hand, if all CP-conserving phases of invariant amplitudes are equal to zero, then \(\bar{S}_{1}=S^{*}_{1}\), \(\bar{S}_{2}=S^{*}_{2}\), and \(\bar{S}_{3}=S^{*}_{3}\).
The helicity amplitudes in terms of three invariant amplitudes, S 1, S 2, and S 3 are
From the decomposition Eq. (33) one finds the following relations between the helicity amplitudes and the invariant amplitudes S 1, S 2, S 3:
with \(\lambda(1,\hat{m}_{1}^{2},\hat{m}_{2}^{2}) \equiv(1-\hat{m}_{1}^{2})^{2} - 2\hat{m}_{2}^{2}(1+\hat{m}_{1}^{2}) +\hat{m}_{2}^{4}\) and \(\hat{m}_{1(2)} \equiv m_{1(2)}/m_{B}\).
Note that the polarized decay amplitudes can be expressed in several different but equivalent bases. For example, the helicity amplitudes can be related to the spin amplitudes in the transversity basis (A 0,A ∥,A ⊥) defined in terms of the linear polarization of the vector mesons via:
A 0, A ∥, A ⊥ are related to S 1, S 2 and S 3 of Eq. (30) via
The amplitude \(\bar{A}_{\lambda}\) (λ=0,∥,⊥) are related to the invariant amplitudes of the \(\bar{B} \to\bar{V}_{1} \bar{V}_{2}\) decay by the formulas
If the B→V 1 V 2 decay is invariant under CP transformation, then \(\bar{A}_{0}=A_{0}\), \(\bar{A}_{\|}=A_{\|}\), and \(\bar{A}_{\perp}=-A_{\perp}\).
The decay width is expresses as follows:
The matrix element for the \(B_{d}^{0}\to K^{*0} V\) decay, where V=ρ 0,ω,ϕ,J/ψ(1S),ψ(2S),… mesons, we can represent as
Next, we define the normalized amplitudes:
By putting m 1=m V , \(m_{2} = m_{K^{*}}\) and using (37), (39) we obtain the relation between the amplitudes h λ and A λ of the process under study \(B_{d}^{0} \to K^{*0} V\) for any vector meson V=ρ 0,ω,ϕ,J/ψ(1S),ψ(2S),…:
where BR(…) is the branching ratio of \(B_{d}^{0} \to K^{*0} V\) decay and τ B is the lifetime of a B meson.
Solving Eqs. (35) we find the scalars S 1,S 2 and S 3, and then extend the helicity amplitudes \(A_{\lambda}^{V}\) off the mass shell of the meson V, i.e. for \(q^{2} \ne m_{V}^{2}\). We introduce the phases \(\delta_{\lambda}^{V} \equiv\mathrm{arg}(h_{\lambda}^{V})\), \(\delta_{i}^{V} \equiv\mathrm{arg}(S_{i}^{V})\), where i=1,2,3. Then we have
The branching ratio and decay amplitudes are given in Table 5.
Rights and permissions
About this article
Cite this article
Korchin, A.Y., Kovalchuk, V.A. Contribution of vector resonances to the \(\bar{B}_{d}^{0}\to\bar {K}^{*0}\mu^{+}\mu^{-}\) decay. Eur. Phys. J. C 72, 2155 (2012). https://doi.org/10.1140/epjc/s10052-012-2155-2
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjc/s10052-012-2155-2