Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Collinear laser spectroscopy of atomic cadmium

Extraction of nuclear magnetic dipole and electric quadrupole moments

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Hyperfine structure A and B factors of the atomic 5s5p 3P2 → 5s6s 3S1 transition are determined from collinear laser spectroscopy data of 107−123Cd and 111m−123mCd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with s 1/2 and d 5/2 nuclear ground states and isomeric h 11/2 states is evaluated and a linear relationship is observed for all nuclear states except s 1/2. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic 5s5p 3P2 level is derived from multi-configuration Dirac-Hartree-Fock calculations in order to evaluate the spectroscopic nuclear quadrupole moments. The results are consistent with those obtained in an ionic transition and based on a similar calculation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bohr, V.F. Weisskopf, Phys. Rev. 77, 94 (1950)

    Article  MATH  ADS  Google Scholar 

  2. P.A. Moskowitz, M. Lombardi, Phys. Lett. B 46, 334 (1973)

    Article  ADS  Google Scholar 

  3. P.A. Moskowitz, Phys. Lett. B 118, 29 (1982)

    Article  ADS  Google Scholar 

  4. J.R. Persson, Hyperf. Int. 162, 139 (2005)

    Article  ADS  Google Scholar 

  5. C. Ekström et al., Nucl. Phys. A 348, 25 (1980)

    Article  ADS  Google Scholar 

  6. A.C. Mueller et al., Nucl. Phys. A 403, 234 (1983)

    Article  ADS  Google Scholar 

  7. R.L. Chaney, M.N. McDermott, Phys. Lett. A 29, 103 (1969)

    Article  ADS  Google Scholar 

  8. P.W. Spence, M.N. McDermott, Phys. Lett. A 42, 273 (1972)

    Article  ADS  Google Scholar 

  9. N.S. Laulainen, M.N. McDermott, Phys. Rev. 177, 1615 (1969)

    Article  ADS  Google Scholar 

  10. D.T. Yordanov et al., Phys. Rev. Lett. 110, 192501 (2013)

    Article  ADS  Google Scholar 

  11. K. Kreim et al., Phys. Lett. B 371, 97 (2014)

    Article  ADS  Google Scholar 

  12. K. Burns, K.B. Adams, J. Opt. Soc. Am. 46, 94 (1956)

    Article  ADS  Google Scholar 

  13. A. Krieger et al., Nucl. Instrum. Meth. A 632, 23 (2011)

    Article  ADS  Google Scholar 

  14. D.M. Symochko et al., Nucl. Data Sheets 110, 2945 (2009)

    Article  ADS  Google Scholar 

  15. W. Faust, M.N. McDermott, W. Lichten, Phys. Rev. 120, 469 (1960)

    Article  ADS  Google Scholar 

  16. M.S.W.M. Brimicombe et al., Proc. R. Soc. Lond. A. 352, 141 (1976)

    Article  ADS  Google Scholar 

  17. N. Boos, Diploma Thesis, Institut für Kernphysik, Universität Mainz (1989)

  18. N.J. Stone, Atom. Data Nucl. Data Tab. 90, 75 (2005)

    Article  ADS  Google Scholar 

  19. H. Kopfermann, Nuclear Moments (Academic Press, New York, 1958)

  20. J.R. Persson, Atom. Data Nucl. Data Tab. 99, 62 (2013)

    Article  ADS  Google Scholar 

  21. P. Thaddeus, M.N. McDermott, Phys. Rev. 132, 1186 (1963)

    Article  ADS  Google Scholar 

  22. I.P. Grant, Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (Springer, New York, 2007)

  23. P. Jönsson, X. He, C. Froese Fischer, Comput. Phys. Commun. 176, 597 (2007)

    Article  Google Scholar 

  24. P. Jönsson, G. Gaigalas, J. Bieroń, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 184, 2197 (2013)

    Article  ADS  Google Scholar 

  25. I.P. Grant, Comput. Phys. Commun. 84, 59 (1994)

    Article  ADS  Google Scholar 

  26. K. Paduch, J. Bieroń, J. Phys. B 33, 303 (2000)

    Article  ADS  Google Scholar 

  27. A. Derevianko, Phys. Rev. A 65, 012106 (2001)

    Article  ADS  Google Scholar 

  28. J. Bieroń, P. Pyykkö, D. Sundholm, V. Kellö, A.J. Sadlej, Phys. Rev. A 64, 052507 (2001)

    Article  ADS  Google Scholar 

  29. J. Bieroń, P. Jönsson, C. Froese Fischer, Phys. Rev. A 53, 2181 (1996)

    Article  ADS  Google Scholar 

  30. J. Bieroń, C. Froese Fischer, P. Indelicato, P. Jönsson, P. Pyykkö, Phys. Rev. A 79, 052502 (2009)

    Article  ADS  Google Scholar 

  31. J. Bieroń, I.P. Grant, C. Froese Fischer, Phys. Rev. A 56, 316 (1997)

    Article  ADS  Google Scholar 

  32. I. Lindgren, Rep. Prog. Phys. 47, 345 (1984)

    Article  ADS  Google Scholar 

  33. B.G. Wybourne, Spectroscopic Properties of Rare Earths (Wiley, New York, 1965)

  34. B. Engels, Theor. Chim. Acta 86, 429 (1993)

    Article  Google Scholar 

  35. S. Fritzsche, Phys. Scr. T100, 37 (2002)

    Article  ADS  Google Scholar 

  36. J. Bieroń, P. Pyykkö, P. Jönsson, Phys. Rev. A 71, 012502 (2005)

    Article  ADS  Google Scholar 

  37. K.G. Dyall, I.P. Grant, C.T. Johnson, F.A. Parpia, E.P. Plummer, Comput. Phys. Commun. 55, 425 (1989)

    Article  ADS  Google Scholar 

  38. B.J. McKenzie, I.P. Grant, P.H. Norrington, Comput. Phys. Commun. 21, 233 (1980)

    Article  ADS  Google Scholar 

  39. J. Bieroń, P. Pyykkö, Phys. Rev. A 71, 032502 (2005)

    Article  ADS  Google Scholar 

  40. J. Bieroń, J. Phys. B 38, 2221 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Nörtershäuser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frömmgen, N., Balabanski, D., Bissell, M. et al. Collinear laser spectroscopy of atomic cadmium. Eur. Phys. J. D 69, 164 (2015). https://doi.org/10.1140/epjd/e2015-60219-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60219-0

Keywords