Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Heat and mass transfer in nanofluid thin film over an unsteady stretching sheet using Buongiorno’s model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The heat and mass transport of a nanofluid thin film over an unsteady stretching sheet has been investigated. This is the first paper on nanofluid thin film flow caused by unsteady stretching sheet using Buongiorno’s model. The model used for the nanofluid film incorporates the effects of Brownian motion and thermophoresis. The self-similar non-linear ordinary differential equations are solved using Maple’s built-in BVP solver. The results for pure fluid are found to be in good agreement with the literature. Present analysis shows that free surface temperature and nanoparticle volume fraction increase with both unsteadiness and magnetic parameters. The results reveal that effect of both nanofluid parameters and viscous dissipation is to reduce the heat transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.Y. Wang, Quart. Appl. Math. 48, 601 (1990)

    MATH  MathSciNet  Google Scholar 

  2. H.I. Andersson, J.B. Aarseth, B.S. Dandapat, Int. J. Heat Mass Transf. 43, 69 (2000)

    Article  MATH  Google Scholar 

  3. C.H. Chen, Heat Mass Transf. 39, 791 (2003)

    Article  ADS  Google Scholar 

  4. C.H. Chen, J. Non-Newtonian Fluid Mech. 135, 128 (2006)

    Article  MATH  Google Scholar 

  5. C. Wang, Heat Mass Transf. 42, 759 (2006)

    Article  ADS  Google Scholar 

  6. B.S. Dandapat, B. Santra, H.I. Andersson, Int. J. Heat Mass Transf. 46, 3009 (2003)

    Article  MATH  Google Scholar 

  7. I.C. Liu, H.I. Andersson, Int. J. Heat Mass Transf. 51, 4018 (2008)

    Article  MATH  Google Scholar 

  8. I.C. Liu, H.I. Andersson, Int. J. Thermal Sci. 47, 766 (2008)

    Article  Google Scholar 

  9. M.S. Abel, N. Mahesha, J. Tawade, Appl. Math. Model. 33, 3430 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. M.M. Nandeppanavar, K. Vajravelu, M.S. Abel, S. Ravi, H. Jyoti, Int. J. Heat Mass. Transf. 55, 1316 (2012)

    Article  MATH  Google Scholar 

  11. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, Vol. 66 (ASME, San Francisco, USA, 1995), pp. 99--105

  12. J. Buongiorno, ASME J. Heat Transf. 128, 240 (2006)

    Article  Google Scholar 

  13. S. Kakaç, A. Pramuanjaroenkij, Int. J. Heat Mass Transf. 52, 3187 (2009)

    Article  MATH  Google Scholar 

  14. W.A. Khan, I. Pop, Int. J. Heat Mass Transf. 53, 2477 (2010)

    Article  MATH  Google Scholar 

  15. M.A. Hamad, I. Pop, Transp. Porous Med. 87, 25 (2011)

    Article  MathSciNet  Google Scholar 

  16. O.D. Makinde, W.A. Khan, Z.H. Khan, Int. J. Heat Mass Transf. 62, 526 (2013)

    Article  Google Scholar 

  17. M.A.A. Hamad, M. Ferdows, Commun. Nonlinear Sci. Numer. Simulat. 17, 132 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. P. Rana, R. Bhargava, Commun. Nonlinear. Sci. Numer. Simulat. 17, 212 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  19. R. Kandasamy, P. Loganathan, P.P. Arasu, Nucl. Eng. Des. 241, 2053 (2011)

    Article  Google Scholar 

  20. A.B. Rosmila, R. Kandasamy, I. Muhaimin, Appl. Math. Mech. 33, 593 (2012)

    Article  MathSciNet  Google Scholar 

  21. M. Narayana, P. Sibanda, Int. J. Heat Mass. Transf. 55, 7552 (2012)

    Article  Google Scholar 

  22. H. Xu, I. Pop, X.C. You, Int. J. Heat Mass. Transf. 60, 646 (2013)

    Article  Google Scholar 

  23. R. Cortell, Phy. Lett. A 372, 631 (2008)

    Article  MATH  ADS  Google Scholar 

  24. C.H. Chen, Int. J. Non-Linear Mech. 44, 596 (2009)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Qasim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasim, M., Khan, Z.H., Lopez, R.J. et al. Heat and mass transfer in nanofluid thin film over an unsteady stretching sheet using Buongiorno’s model. Eur. Phys. J. Plus 131, 16 (2016). https://doi.org/10.1140/epjp/i2016-16016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16016-8

Keywords