Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Lattice deformation and potential effects on linear and nonlinear optical properties of doped SiGe quantum dot encapsulated in Si matrix

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Electron states in spheroid \(Si_{0.7}Ge_{0.3}\) quantum dots are investigated taking into account the presence of a donor impurity atom and a weak external electromagnetic laser field. The conduction band confining profile along the radial direction is modelled by a parameterized exponential potential. Based on the calculated inter-state transition energies, the nonlinear optical responses associated with light absorption, relative refractive index change, and second and third harmonics generation are evaluated and discussed. Results are reported considering different positions of the donor center in the dot as well as for different values of the exponential potential parameter. When the impurity is shifted to different position, the polarisation changes inside the dot and hence the energy and wave function of the system. The change of impurity position from center to edge of the dot causes redshift whereas the increase in potential parameter causes blueshift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.].

References

  1. A.I. Ekimov, A.A. Onushchenko, JETP Lett. 34, 345–349 (1981)

    ADS  Google Scholar 

  2. A.I. Ekimov, A.A. Onushchenko, Sov. Phys. Semicond. 16, 775–778 (1982)

    Google Scholar 

  3. M.A. Kastner, Phys. Today 46, 24 (1993)

    Article  ADS  Google Scholar 

  4. R. Ashoori, Nature 379, 413–419 (1996)

    Article  ADS  Google Scholar 

  5. T. Chakraborty, in Nanoscopic quantum rings: A new perspective, vol 43. ed. by B. Kramer. In Advance in Solid State Physics (Springer: Berlin/Heidelberg, 2003), pp. 79–94.

  6. B. Krishan, M.R. Garg, Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 4, 7857 (2015)

    Google Scholar 

  7. A.L. Efros, Nature 575, 604–605 (2019)

    Article  ADS  Google Scholar 

  8. G. Cantele, D. Ninno, G. Iadonisi, Calculation of the infrared optical transitions in semiconductor ellipsoidal quantum dots. Nano Lett. 1, 121 (2001)

    Article  ADS  Google Scholar 

  9. L.C.L.Y. Voon, M. Willatzen, Confined states in lens-shaped quantum dots. J. Phys. Condens. Matter. 14, 13667 (2002)

    Article  ADS  Google Scholar 

  10. R.J. Warburton, C. Schulhauser, D. Haft, C. Scheflein, K. Karrai, J.M. Garcia, W. Schoenfeld, P.M. Petroff, Phys. Rev. B 65, 113303 (2002)

    Article  ADS  Google Scholar 

  11. H. Lee, H.C. Leventis, S.J. Moon, P. Chen, P.S. Ito, S.A. Haque, T. Torres, F. Nesch, T. Geiger, S.M. Zakeeruddin, M. Grätzel, Md.K. Nazeeruddin, Adv. Funct. Mater. 19, 2735 (2009)

    Article  Google Scholar 

  12. A. Oukerroum, E. Feddi, J. Bosch Bailach, J. Martinez-Pastor, F. Dujardin, E. Assaid, J. Phys. Condens. Matter 22, 375301 (2010)

    Article  Google Scholar 

  13. M. Sabaeian, A.K. Nasab, Appl. Opt. 51, 4176 (2012)

    Article  ADS  Google Scholar 

  14. M. Sabaeian, M. Riyahi, Physica E 89, 105 (2017)

    Article  ADS  Google Scholar 

  15. M.C. Lbl, S. Scholz, I. Sllner, J. Ritzmann, T. Denneulin, A. Kovcs, B.E. Kardynal, A.D. Wieck, A. Ludwig, R.J. Warburton, Commun. Phys. 2, 1 (2019)

    Google Scholar 

  16. C. Heyn, A. Radu, J.A. Vinasco, D. Laroze, R.L. Restrepo, V. Tulupenko, N.N. Hieu, H.V. Phuc, M.E. Mora-Ramos, J.H. Ojeda, A.L. Morales, C.A. Duque, Opt. Laser Technol. 139, 106953 (2021)

    Article  Google Scholar 

  17. M. Kria, Varsha, M. Farkous, V. Prasad, F. Dujardin, L. M. Perez, D. Laroze, E. Feddi, Curr. Appl. Phys. 25, 1–11 (2021)

  18. F.Y. Huang, Y.S. Tang, J.N. Duan, K.L. Wang, Electron. Lett. 33, 1736–1737 (1997)

    Article  ADS  Google Scholar 

  19. M.R. Sakr, H.W. Jiang, E. Yablonovitch, E.T. Croke, Appl. Phys. Lett. 87, 223104 (2005)

    Article  ADS  Google Scholar 

  20. W.M. Witzel, R. Rahman, M.S. Carroll, Phys. Rev B 85, 205312 (2012)

    Article  ADS  Google Scholar 

  21. V. Kornich, Ch. Kloeffel, D. Loss, Quantum 2, 70 (2018)

    Article  Google Scholar 

  22. Ch. Volk, A. Chatterjee, F. Ansaloni, Ch.M. Marcus, F. Kuemmeth, Nano Lett. 19, 5628–5633 (2019)

    Article  ADS  Google Scholar 

  23. E.J. Connors, J.J. Nelson, H. Qiao, L.F. Edge, J.M. Nichol, Phys. Rev. B 100, 165305 (2019)

    Article  ADS  Google Scholar 

  24. Th. McJunkin, E.R. MacQuarrie, L. Tom, S.F. Neyens, J.P. Dodson, B. Thorgrimsson, J. Corrigan, H. Ekmel Ercan, D.E. Savage, M.G. Lagally, R. Joynt, S.N. Coppersmith, M. Friesen, M.A. Eriksson, Phys. Rev. B 104, 085406 (2021)

    Article  ADS  Google Scholar 

  25. A.R. Mills, Ch.R. Guinn, M.J. Gullans, A.J. Sigillito, M.M. Feldman, E. Nielsen, J.R. Petta, Sci. Adv. 8, eabn5130 (2022)

    Article  Google Scholar 

  26. E.J. Connors, J. Nelson, L.F. Edge, J.M. Nichol, Nat. Commun. 13, 940 (2022)

    Article  ADS  Google Scholar 

  27. R.W. Boyd Nonlinear Optics, 2nd edn. (Academic Press) (2003)

  28. K.G. Dvoyan, D.B. Hayrapetyan, E.M. Kazaryan, A.A. Tshantshapanyan, Nanoscale Res. Lett. 2, 601 (2007)

    Article  ADS  Google Scholar 

  29. L. Lu, W. Xie, Z. Shu, Phys. B Condens. Matter 406, 3735 (2011)

    Article  ADS  Google Scholar 

  30. S.G. Nobandegani, M.J. Karimi, Opt. Mater. 82, 75 (2018)

    Article  ADS  Google Scholar 

  31. M.R.K. Vahdani, G. Rezaei, Phys. Lett. A 373, 3079 (2009)

    Article  ADS  Google Scholar 

  32. A. El Aouami, M. Bikerouin, K. Feddi, N. Aghoutane, M. El-Yadri, E. Feddi, F. Dujardin, A. Radu, R.L. Restrepo, J.A. Vinasco, A.L. Morales, C.A. Duque, M.E. Mora-Ramos, Philos. Mag. 100, 2503 (2020)

    Article  ADS  Google Scholar 

  33. V.V. Nautiyal, P. Silotia, Phys. Lett. A 382, 2061 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. B. Li, K.X. Guo, C.J. Zhang, Y.B. Zheng, Phys. Lett. A 367, 493 (2007)

    Article  ADS  Google Scholar 

  35. I. Karabulut, S. Baskoutas, J. Compt. Theo. Nano. 6, 153 (2009)

    Article  Google Scholar 

  36. M. Kirak, Y. Altinok, Eur. Phys. J. B 85, 344 (2012)

    Article  ADS  Google Scholar 

  37. M. Varsha, J.. El. Kria, L.M. Hamdaoui, V. Pérez, M. Prasad, D. Laroze. El-Yadri, M. El Feddi, Nanomaterials 11, 1513 (2021)

    Article  Google Scholar 

  38. C.Y. Lin, Y.K. Ho, J. Phys. B At. Mol. Opt. Phys. 45, 145001 (2012)

    Article  ADS  Google Scholar 

  39. K.L. Jahan, b. Boyacioglu, and A. Chatterjee, Scientific Reports, 9, 15824(2019)

  40. W. Xie, Superlattices Microstruct. 65, 271 (2014)

    Article  ADS  Google Scholar 

  41. J.L. Liu, J. Zhu, J. Appl. Phys. 101, 093709 (2007)

    Article  ADS  Google Scholar 

  42. V. Prasad, P. Silotia, Phys. Lett. A 375, 3910 (2011)

    Article  ADS  Google Scholar 

  43. Varsha, P. Silotia and V. Prasad, AIP Conf. Proc., 2220, 020154(2020)

  44. M.R.K. Vahdani, G. Rezaei, Phys. Lett. A 374, 637 (2010)

    Article  ADS  Google Scholar 

  45. I.S. Ruddock, Eur. J. Phys. 15, 53 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

L. M. Pérez acknowledges financial support from ANID through Convocatoria Nacional Subvención a Instalación en la Academia Convocatoria Año 2021, Grant SA77210040. D. Laroze acknowledges partial financial support from Centers of Excellence with BASAL/ANID financing Grant AFB180001, CEDENNA. M. E. Mora-Ramos acknowledges support from Mexican CONACYT through Grant A1-S-8218 (CB 2017-2018).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the manuscript.

Corresponding author

Correspondence to V. Prasad.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varsha, Lakaal, K., Kria, M. et al. Lattice deformation and potential effects on linear and nonlinear optical properties of doped SiGe quantum dot encapsulated in Si matrix. Eur. Phys. J. Plus 137, 1340 (2022). https://doi.org/10.1140/epjp/s13360-022-03530-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03530-9