Abstract
We discuss Hubble tension—the disagreement in two major cosmological measurements of the expansion rate of the universe (the Hubble constant), and the foremost development in cosmology over the past several years. We describe the measurements of the Hubble constant from the cosmic microwave background anisotropies and those that use the distance ladder and type Ia supernovae. We briefly review the status of theoretical explanations for the Hubble tension. We finally discuss why the arguably simplest explanation—sample variance in local measurements—cannot explain the Hubble tension.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
Data Availability Statement
No data have been produced by this work.
References
E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci. 15, 168–173 (1929). https://doi.org/10.1073/pnas.15.3.168
A. Sandage, G.A. Tammann, Steps toward the Hubble constant. VIII Glob. Value. ApJ 256, 339–345 (1982). https://doi.org/10.1086/159911
G. de Vaucouleurs, G. Bollinger, The extragalactic distance scale. VII—the velocity-distance relations in different directions and the Hubble ratio within and without the local supercluster. ApJ 233, 433–452 (1979). https://doi.org/10.1086/157405
W.L. Freedman, B.F. Madore, V. Scowcroft, C. Burns, A. Monson, S.E. Persson, M. Seibert, J. Rigby, Carnegie hubble program: a mid-infrared calibration of the hubble constant. ApJ 758, 24 (2012). https://doi.org/10.1088/0004-637X/758/1/24. arXiv:1208.3281
S. Dhawan, D. Brout, D. Scolnic, A. Goobar, A.G. Riess, V. Miranda, Cosmological model insensitivity of local \(H_0\) from the cepheid distance ladder. Astrophys. J. 894(1), 54 (2020). https://doi.org/10.3847/1538-4357/ab7fb0. arXiv:2001.09260 [astro-ph.CO]
A.G. Riess, L. Macri, S. Casertano, M. Sosey, H. Lampeitl, H.C. Ferguson, A.V. Filippenko, S.W. Jha, W. Li, R. Chornock, D. Sarkar, A redetermination of the hubble constant with the hubble space telescope from a differential distance ladder. ApJ 699, 539–563 (2009). https://doi.org/10.1088/0004-637X/699/1/539. arXiv:0905.0695 [astro-ph.CO]
A.G. Riess, L. Macri, S. Casertano, H. Lampeitl, H.C. Ferguson, A.V. Filippenko, S.W. Jha, W. Li, R. Chornock, A 3% solution: determination of the hubble constant with the hubble space telescope and wide field camera 3. ApJ 730, 119 (2011). https://doi.org/10.1088/0004-637X/730/2/119. arXiv:1103.2976
A.G. Riess, L.M. Macri, S.L. Hoffmann, D. Scolnic, S. Casertano, A.V. Filippenko, B.E. Tucker, M.J. Reid, D.O. Jones, J.M. Silverman, R. Chornock, P. Challis, W. Yuan, P.J. Brown, R.J. Foley, A 2.4% determination of the local value of the hubble constant. ApJ 826, 56 (2016). https://doi.org/10.3847/0004-637X/826/1/56. arXiv:1604.01424
A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scolnic, Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the hubble constant and stronger evidence for physics beyond \(\Lambda \)CDM. Astrophys. J. 876(1), 85 (2019). https://doi.org/10.3847/1538-4357/ab1422. arXiv:1903.07603 [astro-ph.CO]
A.G. Riess et al., A comprehensive measurement of the local value of the hubble constant with 1 km s\(^{-1}\) Mpc\(^{-1}\) uncertainty from the hubble space telescope and the SH0ES team. Astrophys. J. Lett. 934(1), 7 (2022). https://doi.org/10.3847/2041-8213/ac5c5b. arXiv:2112.04510 [astro-ph.CO]
S.M. Feeney, D.J. Mortlock, N. Dalmasso, Clarifying the hubble constant tension with a Bayesian hierarchical model of the local distance ladder. Mon. Not. Roy. Astron. Soc. 476(3), 3861–3882 (2018). https://doi.org/10.1093/mnras/sty418. arXiv:1707.00007 [astro-ph.CO]
W.L Freedman, B.F. Madore, Progress in direct measurements of the hubble constant (2023) arXiv:2309.05618 [astro-ph.CO]
N. Aghanim, et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, 6 (2020) . https://doi.org/10.1051/0004-6361/201833910, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)]
S. Aiola et al., The atacama cosmology telescope: DR4 maps and cosmological parameters. JCAP 12, 047 (2020). https://doi.org/10.1088/1475-7516/2020/12/047. arXiv:2007.07288 [astro-ph.CO]
A.G. Riess, The expansion of the universe is faster than expected. Nat. Rev. Phys. 2(1), 10–12 (2019). https://doi.org/10.1038/s42254-019-0137-0. arXiv:2001.03624 [astro-ph.CO]
T.M.C. Abbott et al., Dark energy survey year 1 results: a precise H0 estimate from DES Y1, BAO, and D/H data. Mon. Not. Roy. Astron. Soc. 480(3), 3879–3888 (2018). https://doi.org/10.1093/mnras/sty1939. arXiv:1711.00403 [astro-ph.CO]
S. Alam et al., Completed SDSS-IV extended Baryon oscillation spectroscopic survey: cosmological implications from two decades of spectroscopic surveys at the apache point observatory. Phys. Rev. D 103(8), 083533 (2021). https://doi.org/10.1103/PhysRevD.103.083533. arXiv:2007.08991 [astro-ph.CO]
A. Cuceu, J. Farr, P. Lemos, A. Font-Ribera, Baryon acoustic oscillations and the hubble constant: past, present and future. JCAP 10, 044 (2019). https://doi.org/10.1088/1475-7516/2019/10/044. arXiv:1906.11628 [astro-ph.CO]
K.C. Wong et al., H0LiCOW—XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3\(\sigma \) tension between early- and late-Universe probes. Mon. Not. Roy. Astron. Soc. 498(1), 1420–1439 (2020). https://doi.org/10.1093/mnras/stz3094. arXiv:1907.04869 [astro-ph.CO]
M. Soares-Santos et al., First measurement of the hubble constant from a dark standard siren using the dark energy survey galaxies and the LIGO/virgo binary-black-hole merger GW170814. Astrophys. J. Lett. 876(1), 7 (2019). https://doi.org/10.3847/2041-8213/ab14f1. arXiv:1901.01540 [astro-ph.CO]
S.M. Feeney, H.V. Peiris, A.R. Williamson, S.M. Nissanke, D.J. Mortlock, J. Alsing, D. Scolnic, Prospects for resolving the Hubble constant tension with standard sirens. Phys. Rev. Lett. 122(6), 061105 (2019). https://doi.org/10.1103/PhysRevLett.122.061105. arXiv:1802.03404 [astro-ph.CO]
E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D.F. Mota, A.G. Riess, J. Silk, In the realm of the Hubble tension—a review of solutions. Class. Quant. Grav. 38(15), 153001 (2021). https://doi.org/10.1088/1361-6382/ac086d. arXiv:2103.01183 [astro-ph.CO]
M. Kamionkowski, A.G. Riess, The hubble tension and early dark energy (2022) arXiv:2211.04492 [astro-ph.CO]
E.L. Turner, R. Cen, J.P. Ostriker, The relation of local measures of Hubble’s constant to its global value. AJ 103, 1427–1437 (1992). (10.1086/116156)
L. Wang, P.J. Steinhardt, Cluster abundance constraints for cosmological models with a time-varying, spatially inhomogeneous energy component with negative pressure. ApJ 508, 483–490 (1998). https://doi.org/10.1086/306436. arXiv:astro-ph/9804015
X. Shi, M.S. Turner, Expectations for the Difference between local and global measurements of the hubble constant. ApJ 493, 519–522 (1998) astro-ph/9707101 . https://doi.org/10.1086/305169
A. Cooray, R.R. Caldwell, Large-scale bulk motions complicate the Hubble diagram. Phys. Rev. D 73(10), 103002 (2006) astro-ph/0601377. https://doi.org/10.1103/PhysRevD.73.103002
L. Hui, P.B. Greene, Correlated fluctuations in luminosity distance and the importance of peculiar motion in supernova surveys. Phys. Rev. D 73(12), 123526 (2006) astro-ph/0512159. https://doi.org/10.1103/PhysRevD.73.123526
L.A. Martinez-Vaquero, G. Yepes, Y. Hoffman, S. Gottlöber, M. Sivan, Constrained simulations of the local universe—II. The nature of the local Hubble flow. MNRAS 397, 2070–2080 (2009). https://doi.org/10.1111/j.1365-2966.2009.15093.x. arXiv:0905.3134
B. Sinclair, T.M. Davis, T. Haugbølle, Residual hubble-bubble effects on supernova cosmology. ApJ 718, 1445–1455 (2010). https://doi.org/10.1088/0004-637X/718/2/1445. arXiv:1006.0911
H.M. Courtois, D. Pomarède, R.B. Tully, Y. Hoffman, D. Courtois, Cosmography of the local universe. AJ 146, 69 (2013). https://doi.org/10.1088/0004-6256/146/3/69. arXiv:1306.0091.
I. Ben-Dayan, R. Durrer, G. Marozzi, D.J. Schwarz, Value of H\(_{0}\) in the inhomogeneous universe. Phys. Rev. Lett. 112(22), 221301 (2014). https://doi.org/10.1103/PhysRevLett.112.221301. arXiv:1401.7973
P. Fleury, C. Clarkson, R. Maartens, How does the cosmic large-scale structure bias the Hubble diagram? JCAP 3, 062 (2017). https://doi.org/10.1088/1475-7516/2017/03/062. arXiv:1612.03726
D. Huterer, Growth of cosmic structure. Astron. Astrophys. Rev. 31(1), 2 (2023). https://doi.org/10.1007/s00159-023-00147-4. arXiv:2212.05003 [astro-ph.CO]
V. Marra, L. Amendola, I. Sawicki, W. Valkenburg, Cosmic variance and the measurement of the local hubble parameter. Phys. Rev. Lett. 110(24), 241305 (2013). https://doi.org/10.1103/PhysRevLett.110.241305. arXiv:1303.3121 [astro-ph.CO]
R. Wojtak, A. Knebe, W.A. Watson, I.T. Iliev, S. Heß, D. Rapetti, G. Yepes, S. Gottlöber, Cosmic variance of the local Hubble flow in large-scale cosmological simulations. MNRAS 438, 1805–1812 (2014). https://doi.org/10.1093/mnras/stt2321. arXiv:1312.0276
I. Odderskov, S. Hannestad, T. Haugbølle, On the local variation of the Hubble constant. JCAP 10, 028 (2014). https://doi.org/10.1088/1475-7516/2014/10/028. arXiv:1407.7364
W.D. Kenworthy, D. Scolnic, A. Riess, The local perspective on the hubble tension: local structure does not impact measurement of the hubble constant. Astrophys. J. 875(2), 145 (2019). https://doi.org/10.3847/1538-4357/ab0ebf. arXiv:1901.08681 [astro-ph.CO]
H.-Y. Wu, D. Huterer, Sample variance in the local measurements of the Hubble constant. Mon. Not. Roy. Astron. Soc. 471(4), 4946–4955 (2017). https://doi.org/10.1093/mnras/stx1967. arXiv:1706.09723 [astro-ph.CO]
S.W. Skillman, M.S. Warren, M.J. Turk, R.H. Wechsler, D.E. Holz, P.M. Sutter, Dark sky simulations: early data release. ArXiv e-prints (2014) arXiv:1407.2600
M.S. Warren, 2HOT: An improved parallel hashed oct-tree N-body algorithm for cosmological simulation. ArXiv e-prints (2013) arXiv:1310.4502 [astro-ph.IM]
P.S. Behroozi, R.H. Wechsler, H.-Y. Wu, The ROCKSTAR phase-space temporal halo finder and the velocity offsets of cluster cores. ApJ 762, 109 (2013). https://doi.org/10.1088/0004-637X/762/2/109. arXiv:1110.4372 [astro-ph.CO]
M.J. Turk, B.D. Smith, J.S. Oishi, S. Skory, S.W. Skillman, T. Abel, M.L. Norman, yt: A multi-code analysis toolkit for astrophysical simulation data. ApJS 192, 9 (2011). https://doi.org/10.1088/0067-0049/192/1/9. arXiv:1011.3514 [astro-ph.IM]
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
There were no conflicts of interest in this research.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Huterer, D. Hubble tension. Eur. Phys. J. Plus 138, 1004 (2023). https://doi.org/10.1140/epjp/s13360-023-04591-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-023-04591-0