Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Post-Hartree–Fock method in quantum chemistry for quantum computer

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Quantum computational chemistry is a potential application of quantum computers that is expected to effectively solve several quantum-chemistry problems, particularly the electronic structure problem. Quantum computational chemistry can be compared to the conventional computational devices. This review comprehensively investigates the applications and overview of quantum computational chemistry, including a review of the Hartree–Fock method for quantum information scientists. Quantum algorithms, quantum phase estimation, and variational quantum eigensolver, have been applied to the post-Hartree–Fock method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Winsberg, Philos. Sci. 70, 105–125 (2003)

    Article  Google Scholar 

  2. Y. Alexeev, D. Bacon, K.R. Brown, R. Calderbank, L.D. Carr, F.T. Chong, B. DeMarco, D. Englund, E. Farhi, B. Fefferman, A.V. Gorshkov, A. Houck, J. Kim, S. Kimmel, M. Lange, S. Lloyd, M.D. Lukin, D. Maslov, P. Maunz, C. Monroe, J. Preskill, M. Roetteler, M. Savage, J. Thompson.PRX Quantum 2, 017001 (2021)

  3. W. Heitler, F. London, Z. Phys. 44, 455–472 (1927)

    Article  ADS  Google Scholar 

  4. L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals (Cornell University Press, Ithaca, 1939)

  5. M. Head-Gordon, E. Artacho, Phys. Today 61, 58–63 (2008)

    Article  Google Scholar 

  6. R.P. Feynman, Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  Google Scholar 

  7. D. Deutsch, Proc. R. Soc. Lond. A 400, 97–117 (1985)

    Article  ADS  Google Scholar 

  8. A. Aspuru-Guzik, A.D. Dutoi, P.J. Love, M. Head-Gordon, Science 309, 1704–1707 (2005)

    Article  ADS  Google Scholar 

  9. J. Preskill, Quantum 2, 79 (2018)

    Article  Google Scholar 

  10. Y. Cao, J. Romero, J.P. Olson, M. Degroote, P.D. Johnson, M. Kieferová, I.D. Kivlichan, T. Menke, B. Peropadre, N.P.D. Sawaya, S. Sim, L. Veis, A. Aspuru-Guzik, Chem. Rev. 119, 10856–10915 (2019)

    Article  Google Scholar 

  11. S. McArdle, S. Endo, A. Aspuru-Guzik, S.C. Benjamin, X. Yuan, Rev. Mod. Phys. 92, 015003 (2020)

    Article  ADS  Google Scholar 

  12. B. Bauer, S. Bravyi, M. Motta, G.K.-L. Chan, Chem.Rev.120, 12685–12717 (2020)

  13. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover, 1996)

  14. E.F. Dumitrescu, A.J. McCaskey, G. Hagen, G.R. Jansen, T.D. Morris, T. Papenbrock, R.C. Pooser, D.J. Dean, P. Lougovski, Phys. Rev. Lett. 120, 210501 (2018)

    Article  ADS  Google Scholar 

  15. N. Klco, E.F. Dumitrescu, A.J. McCaskey, T.D. Morris, R.C. Pooser, M. Sanz, E. Solano, P. Lougovski, M.J. Savage, Phys. Rev. A 98, 032331 (2018)

    Article  ADS  Google Scholar 

  16. A. Smith, M.S. Kim, F. Pollmann, J. Knolle, NPJ Quantum Inf. 5, 106 (2019)

  17. P. Pyykkö, Annu. Rev. Phys. Chem. 63, 45–64 (2012)

    Article  ADS  Google Scholar 

  18. K.G. Dyall, K. Faegri Jr., Introduction to Relativistic Quantum Chemistry (Oxford University Press, Oxford, 2007)

    Book  Google Scholar 

  19. C. Eckart, Phys. Rev. 47, 552–558 (1935)

    Article  ADS  Google Scholar 

  20. S. Bubin, M. Pavanello, W.-C. Tung, K.L. Sharkey, L. Adamowicz, Chem. Rev. 113, 36–79 (2013)

    Article  Google Scholar 

  21. K. Takatsuka, T. Yonehara, K. Hanasaki, Y. Arasaki, Chemical Theory Beyond the Born-Oppenheimer Paradigm (World Scientific, Singapore, 2015)

    Book  Google Scholar 

  22. L. Veis, J. Višñák, H. Nishizawa, H. Nakai, J. Pittner, Int. J. Quantum Chem. 116, 1328–1336 (2016)

    Article  Google Scholar 

  23. R.S. Mulliken, Science 157, 13–24 (1967)

    Article  ADS  Google Scholar 

  24. D.G. Truhlar, B.C. Garrett, S.J. Klippenstein, J. Phys. Chem. 100, 12771–12800 (1996)

    Article  Google Scholar 

  25. S. Maeda, K. Ohno, K. Morokuma, Phys. Chem. Chem. Phys. 15, 3683–3701 (2013)

    Article  Google Scholar 

  26. R.A. Marcus, Annu. Rev. Phys. Chem. 15, 155–196 (1964)

    Article  ADS  Google Scholar 

  27. G.D. Scholes, G.R. Fleming, L.X. Chen, A. Aspuru-Guzik, A. Buchleitner, D.F. Coker, G.S. Engel, R. van Grondelle, A. Ishizaki, D.M. Jonas, J.S. Lundeen, J.K. McCusker, S. Mukamel, J.P. Ogilvie, A. Olaya-Castro, M.A. Ratner, F.C. Spano, K.B. Whaley, X. Zhu, Nature 543, 647–656 (2017)

    Article  ADS  Google Scholar 

  28. H.B. Schlegel, WIREs Comput. Mol. Sci. 1, 790–809 (2011)

    Article  Google Scholar 

  29. W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2000)

    Google Scholar 

  30. J.A. Pople, Angew. Chem. Int. Ed. 38, 1894–1902 (1999)

    Article  Google Scholar 

  31. W. Kolos, L. Wolniewicz, J. Chem. Phys. 49, 404–410 (1968)

    Article  ADS  Google Scholar 

  32. E.R. Davidson, D. Feller, Chem. Rev. 86, 681–696 (1986)

    Article  Google Scholar 

  33. F. Jensen, WIREs Comput. Mol. Sci. 3, 273–295 (2013)

    Article  Google Scholar 

  34. T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic Structure Theory (Wiley, New York, 2000)

  35. C.C.J. Roothaan, Rev. Mod. Phys. 32, 179–185 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  36. B. Cooper, P.J. Knowles, J. Chem. Phys. 133, 234102 (2010)

    Article  ADS  Google Scholar 

  37. G. Harsha, T. Shiozaki, G.E. Scuseria, J. Chem. Phys. 148, 044107 (2018)

    Article  ADS  Google Scholar 

  38. M. Hodecker, A. Dreuw, J. Chem. Phys. 153, 084112 (2020)

    Article  Google Scholar 

  39. S. Hirata, M. Keçeli, Y.-Y. Ohnishi, O. Sode, K. Yagi, Annu. Rev. Phys. Chem. 63, 131–153 (2012)

    Article  ADS  Google Scholar 

  40. D.P. DiVincenzo, Fortschr. Phys. 48, 771?–783 (2000)

  41. P. Jordan, E. Wigner, Z. Phys. 47, 631–651 (1928)

    Article  ADS  Google Scholar 

  42. J.T. Seeley, M.J. Richard, P.J. Love, J. Chem. Phys. 137, 224109 (2012)

    Article  ADS  Google Scholar 

  43. S.B. Bravyi, A.Y. Kitaev, Ann. Phys. 298, 210–226 (2002)

    Article  ADS  Google Scholar 

  44. A. Tranter, P.J. Love, F. Mintert, P.V. Coveney, J. Chem. Theory Comput. 14, 5617–5630 (2018)

    Article  Google Scholar 

  45. Z. Jiang, A. Kalev, W. Mruczkiewicz, H. Neven, Quantum 4, 276 (2020)

    Article  Google Scholar 

  46. K. Setia, S. Bravyi, A. Mezzacapo, J.D. Whitfield, Phys. Rev. Res. 1, 033033 (2019)

    Article  Google Scholar 

  47. F.T. Chong, D. Franklin, M. Martonosi, Nature 549, 180–187 (2017)

    Article  ADS  Google Scholar 

  48. J. Kempe, A. Kitaev, O. Regev, SIAM J. Comput. 35, 1070–1097 (2006)

    Article  MathSciNet  Google Scholar 

  49. E. Campbell, Phys. Rev. Lett. 123, 070503 (2019)

    Article  ADS  Google Scholar 

  50. A.M. Childs, A. Ostrander, Y. Su, Quantum 3, 182 (2019)

    Article  Google Scholar 

  51. G.H. Low, I.L. Chuang, Quantum 3, 163 (2019)

    Article  Google Scholar 

  52. J. Lee, D. Berry, C. Gidney, W.J. Huggins, J.R. McClean, N. Wiebe, R. Babbush, (2020). arXiv:2011.03494

  53. Y. Shikano et al., (2020) (in preparation)

  54. A.Y. Kitaev, (2020). arXiv:quant-ph/9511026

  55. M. Dobšíček, G. Johansson, V. Shumeiko, G. Wendin, Phys. Rev. A 76, 030306(R) (2007)

    Article  ADS  Google Scholar 

  56. K.M. Svore, M.B. Hastings, M. Freedman, Quantum Inf. Comput. 14, 306 (2013)

    Google Scholar 

  57. N. Wiebe, C. Granade, Phys. Rev. Lett. 117, 010503 (2016)

    Article  ADS  Google Scholar 

  58. T.E. O’Brien, B. Tarasinski, B.M. Terhal, New J. Phys. 21, 023022 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  59. E. van den Berg, IEEE International Conference on Quantum Computing and Engineering (QCE), Denver, CO, USA, 2020, pp. 1–10 (2020). https://doi.org/10.1109/QCE49297.2020.00011

  60. J.R. Shewchuk, Technical Report CMU-CS-94-125 (School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1994)

  61. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P.J. Love, A. Aspuru-Guzik, J.L. O’Brien, Nat. Commun. 5, 4213 (2014)

    Article  ADS  Google Scholar 

  62. M.-H. Yung, J. Casanova, A. Mezzacapo, J. McClean, L. Lamata, A. Aspuru-Guzik, E. Solano, Sci. Rep. 4, 3589 (2015)

    Article  Google Scholar 

  63. J..R.. McClean1, J. Romero, R. Babbush, A. Aspuru-Guzik, New J. Phys. 18, 023023 (2016)

  64. J. Nocedal, S. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering (Springer, New York, 2006)

    Google Scholar 

  65. P.K. Barkoutsos, J.F. Gonthier, I. Sokolov, N. Moll, G. Salis, A. Fuhrer, M. Ganzhorn, D.J. Egger, M. Troyer, A. Mezzacapo, S. Filipp, I. Tavernelli, Phys. Rev. A 98, 022322 (2018)

    Article  ADS  Google Scholar 

  66. K.M. Nakanishi, K. Fujii, S. Todo, Phys. Rev. Res. 2, 043158 (2020)

    Article  Google Scholar 

  67. I.G. Ryabinkin, T.-C. Yen, S.N. Genin, A.F. Izmaylov, J. Chem. Theory Comput. 14, 6317–6326 (2018)

    Article  Google Scholar 

  68. J. Lee, W.J. Huggins, M. Head-Gordon, K.B. Whaley, J. Chem. Theory Comput. 15, 311–324 (2019)

    Article  Google Scholar 

  69. J.M. Kübler, A. Arrasmith, L. Cincio1, P.J. Coles, Quantum 4, 263 (2020)

  70. R. Sweke, F. Wilde, J.J. Meyer, M. Schuld, P.K. Fährmann, B. Meynard-Piganeau, J. Eisert, Quantum 4, 314 (2020)

    Article  Google Scholar 

  71. B.T. Gard, L. Zhu, G.S. Barron, N.J. Mayhall, S.E. Economou, E. Barnes, NPJ Quantum Inf. 6, 10 (2020)

  72. Y. Matsuzawa, Y. Kurashige, J. Chem. Theory Comput. 16, 944–952 (2020)

    Article  Google Scholar 

  73. J.R. McClean, S. Boixo, V.N. Smelyanskiy, R. Babbush, H. Neven, Nat. Commun. 9, 4812 (2018)

    Article  ADS  Google Scholar 

  74. J.R. McClean, M.E. Kimchi-Schwartz, J. Carter, W.A. de Jong, Phys. Rev. A 95, 042308 (2017)

    Article  ADS  Google Scholar 

  75. J.I. Colless, V.V. Ramasesh, D. Dahlen, M.S. Blok, M.E. Kimchi-Schwartz, J.R. McClean, J. Carter, W.A. de Jong, I. Siddiqi, Phys. Rev. X 8, 011021 (2018)

    Google Scholar 

  76. O. Higgott, D. Wang, S. Brierley, Quantum 3, 156 (2019)

    Article  Google Scholar 

  77. H.R. Grimsley, S.E. Economou, E. Barnes, N.J. Mayhall, Nat. Commun. 10, 3007 (2019)

    Article  ADS  Google Scholar 

  78. R.M. Parrish, E.G. Hohenstein, P.L. McMahon, T.J. Martínez, Phys. Rev. Lett. 122, 230401 (2019)

    Article  ADS  Google Scholar 

  79. K.M. Nakanishi, K. Mitarai, K. Fujii, Phys. Rev. Res. 1, 033062 (2019)

    Article  Google Scholar 

  80. D.J. Rowe, Rev. Mod. Phys. 40, 153–166 (1968)

    Article  ADS  Google Scholar 

  81. P.J. Ollitrault, A. Kandala, C..-F. Chen, P.Kl. Barkoutsos, A. Mezzacapo, M. Pistoia, S. Sheldon, S. Woerner, J. Gambetta, I. Tavernelli, Phys. Rev. Res. 2, 043140 (2020)

  82. A. Dewes, R. Lauro, F.R. Ong, V. Schmitt, P. Milman, P. Bertet, D. Vion, D. Esteve, Phys. Rev. B 85, 140503 (2012)

    Article  ADS  Google Scholar 

  83. Y. Li, S.C. Benjamin, Phys. Rev. X 7, 021050 (2017)

    Google Scholar 

  84. K. Temme, S. Bravyi, J.M. Gambetta, Phys. Rev. Lett. 119, 180509 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  85. X. Bonet-Monroig, R. Sagastizabal, M. Singh, T.E. O’Brien, Phys. Rev. A 98, 062339 (2018)

    Article  ADS  Google Scholar 

  86. S. McArdle, X. Yuan, S. Benjamin, Phys. Rev. Lett. 122, 180501 (2019)

    Article  ADS  Google Scholar 

  87. S. Endo, Hybrid Quantum-Classical Algorithms and Error Mitigation, Ph. D thesis, University of Oxford (2019)

  88. Google AI Quantum and Collaborators, F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, S. Boixo, M. Broughton, B.B. Buckley, D.A. Buell, B. Burkett, N. Bushnell, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, S. Demura, A. Dunsworth, E. Farhi, A. Fowler, B. Foxen, C. Gidney, M. Giustina, R. Graff, S. Habegger, M.P. Harrigan, A. Ho, S. Hong, T. Huang, W. J. Huggins, L. Ioffe, S.V. Isakov, E. Jeffrey, Z. Jiang, C. Jones, D. Kafri, K. Kechedzhi, J. Kelly, S. Kim, P. V.Klimov, A. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, M. Lindmark, E. Lucero, O. Martin, J. M. Martinis, J. R. McClean, M. McEwen, A. Megrant, X. Mi, M. Mohseni, W. Mruczkiewicz, J. Mutus, O. Naaman, M. Neeley, C. Neill, H. Neven, M.Y. Niu, T. E. O’Brien, E. Ostby, A. Petukhov, H. Putterman, C. Quintana, P. Roushan, N.C. Rubin, D. Sank, K.J. Satzinger, V. Smelyanskiy, D. Strain, K.J. Sung, M. Szalay, T.Y. Takeshita, A. Vainsencher, T. White, N. Wiebe, Z.J. Yao, P. Yeh, A. Zalcman, Science 369, 1084–1089 (2020)

  89. J. Huh, G.G. Guerreschi, B. Peropadre, J.R. McClean, A. Aspuru-Guzik, Nat. Photon. 9, 615–620 (2015)

    Article  ADS  Google Scholar 

  90. Y. Shen, Y. Lu, K. Zhang, J. Zhang, S. Zhang, J. Huh, K. Kim, Chem. Sci. 9, 836–840 (2018)

    Article  Google Scholar 

  91. C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y.N. Joglekar, T. Hashimoto, N. Matsuda, J.L. O’Brien, D.P. Tew, A. Laing, Nature 557, 660–667 (2018)

    Article  ADS  Google Scholar 

  92. D. Wecker, B. Bauer, B.K. Clark, M.B. Hastings, M. Troyer, Phys. Rev. A 90, 1 (2014)

    Article  Google Scholar 

  93. R. Babbush, C. Gidney, D.W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, H. Neven, Phys. Rev. X 8, 041015 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors thank Maho Nakata, Takeshi Abe, Shumpei Uno, Kenji Sugisaki, Rudy Raymond, and the members of the industry-academia collaborative working team, Quantum Computation for Quantum Chemistry (QC4QC), at Quantum Computing Center, Keio University as IBM Q Network Hub at Keio University; Gao Qi, Eriko Watanabe, Shoutarou Sudou, Takeharu Sekiguchi, Eriko Kaminishi, Yohichi Suzuki, Michihiko Sugawara, Shintaro Niimura, and Tomoko Ida, for their useful suggestions on the manuscript and the discussion. Y.S. is grateful to Iwao Ohmine for guiding to molecular science through insightful discussions and Akihito Ishizaki for valuable discussions on physical chemistry. This work is partially supported by JSPS KAKENHI (Grant Nos. 17K05082, 19K14636, 19H05156, 20J13955, 20H00335, 20H05518, and 20K03885), JST, PRESTO (Grant Nos. JPMJPR17GC and JPMJPR20M4) and JST, PRESTO (feasibility study of specific research proposal) (Grant No. JPMJPR19MB). K.M.N. thanks IPA for its support through the MITOU Target program. H.C.W. is also supported by the MEXT Quantum Leap Flagship Program Grant No. JPMXS0118067285.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Shikano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shikano, Y., Watanabe, H.C., Nakanishi, K.M. et al. Post-Hartree–Fock method in quantum chemistry for quantum computer. Eur. Phys. J. Spec. Top. 230, 1037–1051 (2021). https://doi.org/10.1140/epjs/s11734-021-00087-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00087-z