Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1450135.1450187acmconferencesArticle/Chapter ViewAbstractPublication PagesesweekConference Proceedingsconference-collections
research-article

Design and defect tolerance beyond CMOS

Published: 19 October 2008 Publication History

Abstract

It is well recognized that novel computational models, devices and technologies are needed in order to sustain the remarkable advancement of CMOS-based VLSI circuits and systems. Regardless of the models, devices and technologies, any enhancement/replacement to CMOS must show significant gains in at least one of the key metrics (including speed, power and cost) for at least a subset of application domains currently employing CMOS circuits. In addition, effective defect tolerant techniques are a critical factor for the successful adoption of any new computing device due to the fact that nano-scale structures will have defect rates much higher than today's CMOS chips. The task of identifying application domains that could benefit the most from a new model/device/technology and ensuring that the resultant system meets functional requirements in the presence of defects requires synergistic efforts of physical scientists, and circuit and system design researchers.
This paper contains a collection of three contributions-each focusing on one particular emergent technology-presenting a basic introduction on the technologies, some of their unique features in contrast with CMOS, potential application domains for these technologies, and new opportunities that they may bring forward in defect tolerance design. The contributions include both traditional and nontraditional state representations which use either electronic or magnetic interactions.

References

[1]
International Technology Roadmap for Semiconductors. 2007 Edition. 2007. available online at http://www.itrs.net/Links/2007ITRS/Home2007.htm.
[2]
H. B. Akkerman et al. Towards molecular electronics with large-area molecular junctions. Nature, 441:69--72, Feb. 2007.
[3]
I. G. Baek et al. Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage applications. In Tech. Dig. IEDM'05, pages 750--753, 2005.
[4]
J. Billen et al. Improved CuTCNQ resistive non-volatile memories and a statistical study on their threshold voltage. In Proc. ICMTD'07, pages 135--137, 2007.
[5]
D. Bratton et al. Recent progress in high resolution lithography. Polymers for Adv. Technol., 17:94--103, Feb. 2006.
[6]
A. Chen et al. Non-volatile resistive switching for advanced memory applications. In Tech. Dig. IEDM'05, page 31.4, 2005.
[7]
M. Crocker, X. S. Hu, and M. Niemier. Fault models and yield analysis for QCA-based PLAs. Int. Sym. on FPL, pages 435--440, 2007.
[8]
G. Csaba, P. Lugli, A. Csurgay, and W. Porod. Simulation of power gain and dissipation in field-coupled nanomagnet. J. of Comp. Elec., 4(1--2), 2005.
[9]
N. Dao, S. Whittenburg, and R. Cowburn. Micromagnetics simulation of deep-submicron supermalloy disks. J.of Appl. Phys., 90(10):5235--7, 2001.
[10]
A. DeHon and K. K. Likharev. Hybrid CMOS / nanoelectronic digital circuits. In Proc. ICCAD'05, pages 375--382, 2005.
[11]
W. R. Dichtel et al. Designing bistable {2}rotaxanes for molecular electronic devices. Phil. Trans. R. Soc. A, 365:1607--1625, 2007.
[12]
M. Donahue and D. Porter. OOMMF user's guide, version 1.0, interagency report NISTIR 6367. http://math.nist.gov/oommf.
[13]
A. K. et al. Inductively coupled circuits with spin wave bus for information processing. Journal of Nanoelectronics and Optoelectronics, 3:24--34, 2008.
[14]
A. K. et al. Logic devices with spin wave buses - an approach to scalable magneto-electric circuitry. Procedings of the Material Research Society, 2008.
[15]
S. Fölling, Ö. Türel, and K. K. Likharev. Single-electron latching switches as nanoscale synapses. In Proc. IJCNN'01, pages 216--221, 2001.
[16]
C. J. Gao and D. Hammerstrom. Cortical models onto CMOL and CMOS - Architectures and performance/price. IEEE Trans. on Circ. Syst., 54:2502--2515, Nov. 2007.
[17]
J. E. Green et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature, 445:414--417, Jan. 2007.
[18]
I. W. Hamley. Nanostructure fabrication using block copolymers. Nanotechnology, 14:R39--R54, Oct. 2003.
[19]
J. H. Heath et al. A defect-tolerant computer architecture: Opportunities for nanotechnology. Science, 280:1716--1721, Jun. 1998.
[20]
A. Imre, G. Csaba, L. Ji, A. Orlov, G. Bernstein, and W. Porod. Majority logic gate for Magnetic Quantum-dot Cellular Automata. Science, 311 no. 5758:205--208, January 13, 2006.
[21]
S. H. Jo and W. Lu. CMOS compatible nanoscale nonvolatile switching memory. Nano Lett., 8:392--397, Jan. 2008.
[22]
G.-Y. Jung et al. Circuit fabrication at 17 nm half-pitch by nanoimprint lithography. Nano Lett., 6:351--354, Mar. 2006.
[23]
A. Khitun, M. Bao, and K. Wang. Spin wave magnetic nano-fabric: a new approach to spin-based logic circuitry. IEEE Transactions on Magnetics, 2008.
[24]
A. Khitun and K. Wang. Nano scale computational architectures with spin wave bus. Superlattices & Microstructures, 38:184--200, 2005.
[25]
A. Khitun and K. L. Wang. Nano logic circuits with spin wave bus. International Conference on Information Technology: New Generation, page 6, 2006.
[26]
M. P. Kostylev, A. A. Serga, T. Schneider, B. Leven, and B. Hillebrands. Spin-wave logical gates. Applied Physics Letters, 87:153501-1--3, 2005.
[27]
M. N. Kozicki. Nanoscale memory elements based on solid-state electrolytes. IEEE Trans. on Nanotechnology, 4:331--338, May 2005.
[28]
J. H. Lee and K. K. Likharev. Crossnets as pattern classifiers. Lecture Notes in Computer Science, 3512:446--454, 2005.
[29]
J. H. Lee and K. K. Likharev. In situ training of CMOL CrossNets. In Proc. WCCI/IJCNN'06, pages 5026--5024, 2006.
[30]
J. H. Lee and K. K. Likharev. Defect-tolerant nanoelectronic pattern classifiers. Int. J. Circ. Theory App., 35:239--4, 2007.
[31]
J. H. Lee, X. Ma, and K. K. Likharev. CMOL Crossnets: Possible neuromorphic nanoelectronic circuits. In Y. Weiss et al., editor, Advances in Neural Information Processing Systems, volume 18, pages 755--762. MIT Press, 2006.
[32]
C. Lent and P. Tougaw. A device architecture for computing with quantum dots. Proc. of the IEEE, 85:541, 1997.
[33]
K. K. Likharev. Electronics below 10 nm. In J. Greer et al., editor, Nano and Giga Challenges in Microelectronics, pages 27--68. Elsevier, Amsterdam, 2003.
[34]
K. K. Likharev. CMOL: A silicon-based bottom-up approach to nanoelectronics. Interface, 14:43--45, May 2005.
[35]
K. K. Likharev. CMOL: Freeing advanced lithography from the alignment accuracy burden. J. Vac. Sci. Technol. B, 25:2531--2536, Nov. 2007.
[36]
K. K. Likharev. Resistive and hybrid CMOS/nanodevice memories. In J. E. Brewer and M. Gill, editors, Nonvolatile Memory Technologies with Emphasis on Flash, pages 696--703. IEEE Press, Hoboken, NJ, 2008.
[37]
K. K. Likharev and D. B. Strukov. CMOL: Devices, circuits, and architectures. In G. Cuniberti et al., editor, Introducing Molecular Electronics, pages 447--477. Springer, Berlin, 2005.
[38]
K. K. Likharev and D. B. Strukov. Prospects for the development of digital CMOL circuits. In Proc. NanoArch'07, pages 109--116, 2007.
[39]
K. K. Likharev et al. CrossNets - High-performance neuromorphic architectures for CMOL circuits. Ann. NY Acad. Sci., 1006:15--58, 2003.
[40]
A. K. M. M. Eshaghian-Wilner, S. Navab and K. L. Wang. Constant-time image processing on spin- wave nano-architectures. Physica Status Solidi, 2007.
[41]
X. Ma and K. K. Likharev. Global reinforcement learning in stochastic neural networks. IEEE Trans. on Neural Networks, 18:573--577, Mar. 2007.
[42]
M. Masssoumi et al. Design and evaluation of basic standard encryption algorithm modules using nanosized complementary metal-oxide-semiconductor-molecular circuits. Nanotechnology, 17:89--99, Jan. 2005.
[43]
A. Mayr et al. Synthesis of oligo(phenyleneethynylene)s containing central pyromellitdiimide or naphthalenediimide groups and bearing terminal isocyanide groups: molecular components for single-electron transistors. Tetrahedron, 63:8206--8217, Aug. 2007.
[44]
G. I. Meijer. Who wins the nonvolatile memory race? Science, 319:1625--1626, Mar. 2008.
[45]
A. R. Meo. Majority gate networks. IEEE Transactions on Electronic Computers, EC-15:606--18, 1966.
[46]
M. Niemier, M. Alam, X. S. Hu, G. Bernstein, W. Porod, M. Putney, and J. DeAngelis. Clocking structures and power analysis for nanomagnet-based logic devices. ISLPED, pages 26--31, 2007.
[47]
M. Niemier, M. Crocker, and X. Hu. Fabrication variations and defect tolerance for nanomagnet-based QCA. IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Sys., Oct. 1-3, 2008.
[48]
G. A. Prinz. Magnetoelectronics. Science, 282:1660--63, 1998.
[49]
T. Roska. Analogic wave computers-wave-type algorithms: canonical description, computer classes, and computational complexity. IEEE International Symposium on Circuits and Systems, 2:41--4, 2001.
[50]
T. Schneider, A. A. Serga, B. Leven, B. Hillebrands, R. L. Stamps, and M. P. Kostylev. Realization of spin-wave logic gates. Appl. Phys. Lett., 92:022505--3, 2008.
[51]
G. S. Snider and R. S. Williams. Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology, 18, Jan. 2007. art. 035204.
[52]
H. H. Solak. Nanolithography with coherent extreme ultraviolet light. J. Phys. D, 39:R171--R178, May 2006.
[53]
M. R. Stan et al. Molecular electronics. Proc. IEEE, 91:1940--1957, Nov. 2003.
[54]
D. B. Strukov and K. K. Likharev. CMOL FPGA: A cell-based, reconfigurable architecture for hybrid digital circuits using two-terminal nanodevices. Nanotechnology, 16:888--900, Jun. 2005.
[55]
D. B. Strukov and K. K. Likharev. Prospects for terabit-scale nanoelectronic memories. Nanotechnology, 16:137--148, Jan. 2005.
[56]
D. B. Strukov and K. K. Likharev. CMOL FPGA circuits. In Proc. CDES'06, pages 213--219, 2006.
[57]
D. B. Strukov and K. K. Likharev. Defect-tolerant architectures for nanoelectronic crossbar memories. J. Nanoscience and Nanotechnology, 7:151--167, Jan. 2007.
[58]
D. B. Strukov and K. K. Likharev. Reconfigurable hybrid CMOS/nanodevice circuits for image processing. IEEE Trans. on Nanotechnology, 6:696--710, Nov. 2007.
[59]
D. B. Strukov and K. K. Lkharev. A reconfigurable architecture for hybrid CMOS/nanodevice circuits. In Proc. FPGA'06, pages 131--140, 2006.
[60]
T. F. T. Oya, T. Asai and Y. Amemiya. A majority-logic device using an irreversible single- electron box. IEEE Transactions on Nanotechnology, 2:15--22, 2003.
[61]
D. Tu et al. Three-dimensional CMOL: Three-dimensional integration of CMOS/nanomaterial hybrid digital circuits. Micro Nano Lett., 2:40--45, Jun. 2007.
[62]
Ö. Türel et al. Neuromorphic architectures for nanoelectronic circuits. Int. J. Circ. Theory App., 32:277--302, Sep.-Oct. 2004.
[63]
D. J. Wagner and A. H. Jayatissa. Nanoimprint lithography: Review of aspects and applications. Proc. SPIE, 6002:136--144, Nov. 2005.
[64]
K. L. Wang, A. Khitun, and A. H. Flood. Interconnects for nanoelectronics. IEEE 2005 International Interconnect Technology Conference, pages 231--233, 2005.
[65]
R. Waser and M. Aono. Nanoionics-based resistive switching memories. Nature Materials, 6:833--840, Nov. 2007.
[66]
X. Wu, C. Liu, L.Li, P. Jones, R. Chantrell, and D. Weller. Nonmagnetic shell in surfactant-coated FePt nanoparticles. J. Appl. Phys., 95:6810--6812, 2004.

Cited By

View all
  • (2013)Towards data reliable crossbar-based memristive memories2013 IEEE International Test Conference (ITC)10.1109/TEST.2013.6651928(1-10)Online publication date: Sep-2013
  • (2012)Design exploration of hybrid CMOS and memristor circuit by new modified nodal analysisIEEE Transactions on Very Large Scale Integration (VLSI) Systems10.1109/TVLSI.2011.213644320:6(1012-1025)Online publication date: 1-Jun-2012
  • (2012)DNA-Linker-Induced Surface Assembly of Ultra Dense Parallel Single Walled Carbon Nanotube ArraysNano Letters10.1021/nl201818u12:3(1129-1135)Online publication date: 22-Feb-2012

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
CODES+ISSS '08: Proceedings of the 6th IEEE/ACM/IFIP international conference on Hardware/Software codesign and system synthesis
October 2008
288 pages
ISBN:9781605584706
DOI:10.1145/1450135
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 October 2008

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. cmol
  2. defect tolerance
  3. nanotechnology
  4. qca
  5. spin wave

Qualifiers

  • Research-article

Conference

ESWEEK 08
ESWEEK 08: Fourth Embedded Systems Week
October 19 - 24, 2008
GA, Atlanta, USA

Acceptance Rates

CODES+ISSS '08 Paper Acceptance Rate 44 of 143 submissions, 31%;
Overall Acceptance Rate 280 of 864 submissions, 32%

Upcoming Conference

ESWEEK '24
Twentieth Embedded Systems Week
September 29 - October 4, 2024
Raleigh , NC , USA

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)1
Reflects downloads up to 22 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2013)Towards data reliable crossbar-based memristive memories2013 IEEE International Test Conference (ITC)10.1109/TEST.2013.6651928(1-10)Online publication date: Sep-2013
  • (2012)Design exploration of hybrid CMOS and memristor circuit by new modified nodal analysisIEEE Transactions on Very Large Scale Integration (VLSI) Systems10.1109/TVLSI.2011.213644320:6(1012-1025)Online publication date: 1-Jun-2012
  • (2012)DNA-Linker-Induced Surface Assembly of Ultra Dense Parallel Single Walled Carbon Nanotube ArraysNano Letters10.1021/nl201818u12:3(1129-1135)Online publication date: 22-Feb-2012

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media