Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Particle-based anisotropic surface meshing

Published: 21 July 2013 Publication History

Abstract

This paper introduces a particle-based approach for anisotropic surface meshing. Given an input polygonal mesh endowed with a Riemannian metric and a specified number of vertices, the method generates a metric-adapted mesh. The main idea consists of mapping the anisotropic space into a higher dimensional isotropic one, called "embedding space". The vertices of the mesh are generated by uniformly sampling the surface in this higher dimensional embedding space, and the sampling is further regularized by optimizing an energy function with a quasi-Newton algorithm. All the computations can be re-expressed in terms of the dot product in the embedding space, and the Jacobian matrices of the mappings that connect different spaces. This transform makes it unnecessary to explicitly represent the coordinates in the embedding space, and also provides all necessary expressions of energy and forces for efficient computations. Through energy optimization, it naturally leads to the desired anisotropic particle distributions in the original space. The triangles are then generated by computing the Restricted Anisotropic Voronoi Diagram and its dual Delaunay triangulation. We compare our results qualitatively and quantitatively with the state-of-the-art in anisotropic surface meshing on several examples, using the standard measurement criteria.

Supplementary Material

ZIP File (a99-zhong.zip)
Supplemental material.
MP4 File (tp097.mp4)

References

[1]
Alauzet, F., and Loseille, A. 2010. High-order sonic boom modeling based on adaptive methods. Journal of Computational Physics 229, 3, 561--593.
[2]
Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. ACM Transactions on Graphics 22, 3, 485--493.
[3]
Boissonnat, J., Wormser, C., and Yvinec, M. 2008. Anisotropic diagrams: Labelle Shewchuk approach revisited. Theoretical Computer Science 408, 2--3, 163--173.
[4]
Boissonnat, J., Wormser, C., and Yvinec, M. 2008. Locally uniform anisotropic meshing. In Proceedings of the 24th annual symposium on Computational geometry, SCG '08, 270--277.
[5]
Boissonnat, J., Wormser, C., and Yvinec, M. 2011. Anisotropic Delaunay mesh generation. Research Report RR-7712.
[6]
Boissonnat, J.-D., Dyer, R., and Ghosh, A. 2012. Stability of Delaunay-type structures for manifolds. In Symposium on Computational Geometry, 229--238.
[7]
Borouchaki, H., George, P. L., Hecht, F., Laug, P., and Saltel, E. 1997. Delaunay mesh generation governed by metric specifications. part I. algorithms. Finite Elements in Analysis and Design 25, 1--2, 61--83.
[8]
Borouchaki, H., George, P. L., and Mohammadi, B. 1997. Delaunay mesh generation governed by metric specifications. part II. applications. Finite Elements in Analysis and Design 25, 1--2, 85--109.
[9]
Borsuk, K. 1948. On the imbedding of systems of compacta in simplicial complexes. Fund. Math 35, 217--234.
[10]
Bossen, F., and Heckbert, P. 1996. A pliant method for anisotropic mesh generation. In 5th International Meshing Roundtable, 63--76.
[11]
Bronson, J. R., Levine, J. A., and Whitaker, R. T. 2012. Particle systems for adaptive, isotropic meshing of CAD models. Engineering with Computers 28, 4, 331--344.
[12]
Cañas, G. D., and Gortler, S. J. 2006. Surface remeshing in arbitrary codimensions. Visual Computer 22, 9, 885--895.
[13]
D'Azevedo, E. F. 1991. Optimal triangular mesh generation by coordinate transformation. SIAM Journal on Scientific and Statistical Computing 12, 4, 755--786.
[14]
Dey, T. K., and Ray, T. 2010. Polygonal surface remeshing with Delaunay refinement. Engineering with Computers 26, 3, 289--301.
[15]
Dobrzynski, C., and Frey, P. 2008. Anisotropic Delaunay mesh adaptation for unsteady simulations. In 17th International Meshing Roundtable, 177--194.
[16]
Du, Q., and Wang, D. 2005. Anisotropic centroidal Voronoi tessellations and their applications. SIAM Journal on Scientific Computing 26, 3, 737--761.
[17]
Du, Q., Faber, V., and Gunzburger, M. 1999. Centroidal Voronoi tessellations: Applications and algorithms. SIAM Review 41, 4, 637--676.
[18]
Du, Q., Gunzburger, M. D., and Ju, L. 2003. Constrained centroidal Voronoi tessellations for surfaces. SIAM Journal on Scientific Computing 24, 5, 1488--1506.
[19]
Edelsbrunner, H., and Shah, N. R. 1994. Triangulating topological spaces. In Symposium on Computational Geometry, 285--292.
[20]
Fattal, R. 2011. Blue-noise point sampling using kernel density model. ACM Transactions on Graphics 30, 4, 48:1--48:12.
[21]
Freidlin, M. 1968. On the factorization of non-negative definite matrices. Theory of Probability and Its Applications 13, 2, 354--356.
[22]
Frey, P. J., and Borouchaki, H. 1997. Surface mesh evaluation. In 6th International Meshing Roundtable, 363--373.
[23]
Heckbert, P. S., and Garland, M. 1999. Optimal triangulation and quadric-based surface simplification. Computational Geometry 14, 1--3, 49--65.
[24]
Horn, R. A., and Johnson, C. R. 1985. Matrix Analysis. Cambridge University Press.
[25]
Kovacs, D., Myles, A., and Zorin, D. 2010. Anisotropic quadrangulation. In Proceedings of the 14th ACM Symposium on Solid and Physical Modeling, SPM '10, 137--146.
[26]
Kuiper, N. H. 1955. On C1-isometric embeddings I. In Proc. Nederl. Akad. Wetensch. Ser. A, 545--556.
[27]
Labelle, F., and Shewchuk, J. R. 2003. Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation. In Proceedings of the 19th Annual Symposium on Computational Geometry, ACM, 191--200.
[28]
Leibon, G., and Letscher, D. 2000. Delaunay triangulations and Voronoi diagrams for Riemannian manifolds. In Proceedings of the Sixteenth Annual Symposium on Computational Geometry, SCG '00, 341--349.
[29]
Lévy, B., and Bonneel, N. 2012. Variational anisotropic surface meshing with Voronoi parallel linear enumeration. In 21st International Meshing Roundtable, 349--366.
[30]
Lévy, B., and Liu, Y. 2010. Lp centroidal Voronoi tessellation and its applications. ACM Transactions on Graphics 29, 4, 119:1--119:11.
[31]
Li, H., Wei, L., Sander, P. V., and Fu, C. 2010. Anisotropic blue noise sampling. ACM Transactions on Graphics 29, 6, 167:1--167:12.
[32]
Liu, D. C., and Nocedal, J. 1989. On the limited memory BFGS method for large scale optimization. Mathematical Programming 45, 3, 503--528.
[33]
Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D., Lu, L., and Yang, C. 2009. On centroidal Voronoi tessellation -- energy smoothness and fast computation. ACM Transactions on Graphics 28, 4, 101:1--101:17.
[34]
Lloyd, S. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory 28, 2, 129--137.
[35]
Loseille, A., and Alauzet, F. 2011. Continuous mesh framework part I: Well-posed continuous interpolation error. SIAM Journal on Numerical Analysis 49, 1, 38--60.
[36]
Loseille, A., and Alauzet, F. 2011. Continuous mesh framework part II: Validations and applications. SIAM Journal on Numerical Analysis 49, 1, 61--86.
[37]
Meyer, M. D., Georgel, P., and Whitaker, R. T. 2005. Robust particle systems for curvature dependent sampling of implicit surfaces. In International Conference on Shape Modeling and Applications, 124--133.
[38]
Mirebeau, J., and Cohen, A. 2010. Anisotropic smoothness classes: From finite element approximation to image models. Journal of Mathematical Imaging and Vision 38, 1, 52--69.
[39]
Mirebeau, J., and Cohen, A. 2012. Greedy bisection generates optimally adapted triangulations. Mathematics of Computation 81, 278, 811--837.
[40]
Mount, D. M., and Arya, S. 1997. ANN: A library for approximate nearest neighbor searching. In CGC Workshop on Computational Geometry, 33--40.
[41]
Nash, J. 1954. C1-isometric embeddings. Annals of Mathematics 60, 3, 383--396.
[42]
Peyre, G., and Cohen, L. 2004. Surface segmentation using geodesic centroidal tesselation. In Proceedings of the 3D Data Processing, Visualization, and Transmission, 2nd International Symposium, 3DPVT '04, 995--1002.
[43]
Peyre, G., Pechaud, M., Keriven, R., and Cohen, L. 2010. Geodesic methods in computer vision and graphics. Foundations and Trends in Computer Graphics and Vision 5, 3-4, 197--397.
[44]
Shapiro, P. R., Martel, H., Villumsen, J. V., and Owen, J. M. 1996. Adaptive smoothed particle hydrodynamics, with application to cosmology: Methodology. Astrophysical Journal Supplement 103, 269--330.
[45]
Shewchuk, J. R. 2002. What is a good linear element? interpolation, conditioning, and quality measures. In 11th International Meshing Roundtable, 115--126.
[46]
Shimada, K., and Gossard, D. C. 1995. Bubble mesh: Automated triangular meshing of non-manifold geometry by sphere packing. In Proceedings of the 3rd ACM Symposium on Solid Modeling and Applications, 409--419.
[47]
Shimada, K., Yamada, A., and Itoh, T. 1997. Anisotropic triangular meshing of parametric surfaces via close packing of ellipsoidal bubbles. In 6th International Meshing Roundtable, 375--390.
[48]
Simpson, R. B. 1994. Anisotropic mesh transformations and optimal error control. Applied Numerical Mathematics 14, 1--3, 183--198.
[49]
Sun, F., Choi, Y., Wang, W., Yan, D., Liu, Y., and Lévy, B. 2011. Obtuse triangle suppression in anisotropic meshes. Computer Aided Geometric Design 28, 9, 537--548.
[50]
Turk, G. 1992. Re-tiling polygonal surfaces. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, ACM, SIGGRAPH '92, 55--64.
[51]
Valette, S., Chassery, J. M., and Prost, R. 2008. Generic remeshing of 3D triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Transactions on Visualization and Computer Graphics 14, 2, 369--381.
[52]
Witkin, A. P., and Heckbert, P. S. 1994. Using particles to sample and control implicit surfaces. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, ACM, SIGGRAPH '94, 269--277.
[53]
Yamakawa, S., and Shimada, K. 2000. High quality anisotropic tetrahedral mesh generation via packing ellipsoidal bubbles. In 9th International Meshing Roundtable, 263--273.
[54]
Yan, D., Lévy, B., Liu, Y., Sun, F., and Wang, W. 2009. Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. Computer Graphics Forum 28, 5, 1445--1454.
[55]
Zhang, M., Huang, J., Liu, X., and Bao, H. 2010. A wave-based anisotropic quadrangulation method. ACM Transactions on Graphics 29, 4, 118:1--118:8.

Cited By

View all
  • (2024)Multi-level Partition of Unity on Differentiable Moving ParticlesACM Transactions on Graphics10.1145/368798943:6(1-21)Online publication date: 19-Dec-2024
  • (2024)CWF: Consolidating Weak Features in High-quality Mesh SimplificationACM Transactions on Graphics10.1145/365815943:4(1-14)Online publication date: 19-Jul-2024
  • (2024)Non‐Euclidean Sliced Optimal Transport SamplingComputer Graphics Forum10.1111/cgf.1502043:2Online publication date: 30-Apr-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 32, Issue 4
July 2013
1215 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2461912
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 July 2013
Published in TOG Volume 32, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. anisotropic meshing
  2. gaussian kernel
  3. particle

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)42
  • Downloads (Last 6 weeks)4
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Multi-level Partition of Unity on Differentiable Moving ParticlesACM Transactions on Graphics10.1145/368798943:6(1-21)Online publication date: 19-Dec-2024
  • (2024)CWF: Consolidating Weak Features in High-quality Mesh SimplificationACM Transactions on Graphics10.1145/365815943:4(1-14)Online publication date: 19-Jul-2024
  • (2024)Non‐Euclidean Sliced Optimal Transport SamplingComputer Graphics Forum10.1111/cgf.1502043:2Online publication date: 30-Apr-2024
  • (2024)Adaptively Isotropic Remeshing Based on Curvature Smoothed FieldIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.322797030:7(3196-3209)Online publication date: Jul-2024
  • (2024)A complex geometry isosurface reconstruction algorithm for particle based CFD simulationsComputer Physics Communications10.1016/j.cpc.2024.109333305(109333)Online publication date: Dec-2024
  • (2024)Anisotropic triangular meshing using metric-adapted embeddingsComputer Aided Geometric Design10.1016/j.cagd.2024.102314111(102314)Online publication date: Jun-2024
  • (2024)LiDAR point cloud simplification algorithm with fuzzy encoding-decoding mechanismApplied Soft Computing10.1016/j.asoc.2024.111852162(111852)Online publication date: Sep-2024
  • (2022)Modeling and rendering non-euclidean spaces approximated with concatenated polytopesACM Transactions on Graphics10.1145/3528223.353018641:4(1-13)Online publication date: 22-Jul-2022
  • (2022)Constrained Remeshing Using Evolutionary Vertex OptimizationComputer Graphics Forum10.1111/cgf.1447141:2(237-247)Online publication date: 24-May-2022
  • (2022)Surface Remeshing: A Systematic Literature Review of Methods and Research DirectionsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.301664528:3(1680-1713)Online publication date: 1-Mar-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media