Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2746539.2746596acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Rectangles Are Nonnegative Juntas

Published: 14 June 2015 Publication History

Abstract

We develop a new method to prove communication lower bounds for composed functions of the form f o gn where f is any boolean function on n inputs and g is a sufficiently "hard" two-party gadget. Our main structure theorem states that each rectangle in the communication matrix of f o gn can be simulated by a nonnegative combination of juntas. This is the strongest yet formalization for the intuition that each low-communication randomized protocol can only "query" few inputs of f as encoded by the gadget g. Consequently, we characterize the communication complexity of f o gn in all known one-sided zero-communication models by a corresponding query complexity measure of f. These models in turn capture important lower bound techniques such as corruption, smooth rectangle bound, relaxed partition bound, and extended discrepancy. As applications, we resolve several open problems from prior work: We show that SBPcc (a class characterized by corruption) is not closed under intersection. An immediate corollary is that MAcc ≠ SBPcc. These results answer questions of Klauck (CCC 2003) and Bohler et al. (JCSS 2006). We also show that approximate nonnegative rank of partial boolean matrices does not admit efficient error reduction. This answers a question of Kol et al. (ICALP) for partial matrices.

References

[1]
S. Aaronson. Quantum computing, postselection, and probabilistic polynomial-time. Proceedings of the Royal Society A, 461(2063):3473--3482, 2005. http://dx.doi.org/10.1098/rspa.2005.1546pathdoi:10.1098/rspa.2005.1546.
[2]
S. Aaronson and A. Wigderson. Algebrization: A new barrier in complexity theory. ACM Transactions on Computation Theory, 1(1), 2009. http://dx.doi.org/10.1145/1490270.1490272pathdoi:10.1145/1490270.1490272.
[3]
A. Ada and A. Chattopadhyay. Multiparty communication complexity of disjointness. Technical Report TR08-002, Electronic Colloquium on Computational Complexity (ECCC), 2008. URL: http://eccc.hpi-web.de/report/2008/002/.
[4]
N. Alon. Problems and results in extremal combinatorics--I. Discrete Mathematics, 273(1--3):31--53, 2003. http://dx.doi.org/10.1016/S0012--365X(03)00227--9pathdoi:10.1016/S0012--365X(03)00227--9.
[5]
L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity theory. In Proceedings of the 27th Symposium on Foundations of Computer Science (FOCS), pages 337--347. IEEE, 1986. http://dx.doi.org/10.1109/SFCS.1986.15pathdoi:10.1109/SFCS.1986.15.
[6]
P. Beame, T. Pitassi, N. Segerlind, and A. Wigderson. A strong direct product theorem for corruption and the multiparty communication complexity of disjointness. Computational Complexity, 15(4):391--432, 2006. http://dx.doi.org/10.1007/s00037-007-0220--2pathdoi:10.1007/s00037-007-0220--2.
[7]
E. Böhler, C. Glaßer, and D. Meister. Error-bounded probabilistic computations between MA and AM. Journal of Computer and System Sciences, 72(6):1043--1076, 2006. http://dx.doi.org/10.1016/j.jcss.2006.05.001pathdoi:10.1016/j.jcss.2006.05.001.
[8]
H. Buhrman, N. Vereshchagin, and R. de Wolf. On computation and communication with small bias. In Proceedings of the 22nd Conference on Computational Complexity (CCC), pages 24--32. IEEE, 2007. http://dx.doi.org/10.1109/CCC.2007.18pathdoi:10.1109/CCC.2007.18.
[9]
A. Chakrabarti, R. Kondapally, and Z. Wang. Information complexity versus corruption and applications to orthogonality and gap-hamming. In Proceedings of the 16th International Workshop on Randomization and Computation (RANDOM), pages 483--494. Springer, 2012. http://dx.doi.org/10.1007/978--3--642--32512-0_41pathdoi:10.1007/978--3--642--32512-0_41.
[10]
S. O. Chan, J. Lee, P. Raghavendra, and D. Steurer. Approximate constraint satisfaction requires large LP relaxations. In Proceedings of the 54th Symposium on Foundations of Computer Science (FOCS), pages 350--359. IEEE, 2013. http://dx.doi.org/10.1109/FOCS.2013.45pathdoi:10.1109/FOCS.2013.45.
[11]
A. Chattopadhyay. Circuits, Communication and Polynomials. PhD thesis, McGill University, 2008.
[12]
B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM Journal on Computing, 17(2):230--261, 1988. http://dx.doi.org/10.1137/0217015pathdoi:10.1137/0217015.
[13]
S. Fenner. PP-lowness and a simple definition of AWPP. Theory of Computing Systems, 36(2):199--212, 2003. http://dx.doi.org/10.1007/s00224-002--1089--8pathdoi:10.1007/s00224-002--1089--8.
[14]
D. Gavinsky and S. Lovett. En route to the log-rank conjecture: New reductions and equivalent formulations. In Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP), pages 514--524. Springer, 2014. http://dx.doi.org/10.1007/978--3--662--43948--7_43pathdoi:10.1007/978--3--662--43948--7_43.
[15]
D. Gavinsky and A. Sherstov. A separation of NP and coNP in multiparty communication complexity. Theory of Computing, 6(1):227--245, 2010. http://dx.doi.org/10.4086/toc.2010.v006a010pathdoi:10.4086/toc.2010.v006a010.
[16]
M. Göös, S. Lovett, R. Meka, T. Watson, and D. Zuckerman. Rectangles are nonnegative juntas. Technical Report TR14--147, Electronic Colloquium on Computational Complexity (ECCC), 2014. URL: http://eccc.hpi-web.de/report/2014/147/.
[17]
M. Göös, T. Pitassi, and T. Watson. Zero-information protocols and unambiguity in Arthur--Merlin communication. In Proceedings of the 6th Innovations in Theoretical Computer Science Conference (ITCS), pages 113--122. ACM, 2015. http://dx.doi.org/10.1145/2688073.2688074pathdoi:10.1145/2688073.2688074.
[18]
M. Göös and T. Watson. Communication complexity of set-disjointness for all probabilities. In Proceedings of the 18th International Workshop on Randomization and Computation (RANDOM), pages 721--736. Schloss Dagstuhl, 2014. http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.721pathdoi:10.4230/LIPIcs.APPROX-RANDOM.2014.721.
[19]
T. Gur and R. Raz. Arthur--Merlin streaming complexity. In Proceedings of the 40th International Colloquium on Automata, Languages, and Programming (ICALP), pages 528--539. Springer, 2013. http://dx.doi.org/10.1007/978--3--642--39206--1_45pathdoi:10.1007/978--3--642--39206--1_45.
[20]
Y. Han, L. Hemaspaandra, and T. Thierauf. Threshold computation and cryptographic security. SIAM Journal on Computing, 26(1):59--78, 1997. http://dx.doi.org/10.1137/S0097539792240467pathdoi:10.1137/S0097539792240467.
[21]
P. Harsha and R. Jain. A strong direct product theorem for the tribes function via the smooth-rectangle bound. In Proceedings of the 33rd Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages 141--152. Schloss Dagstuhl, 2013. http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.141pathdoi:10.4230/LIPIcs.FSTTCS.2013.141.
[22]
R. Jain and H. Klauck. The partition bound for classical communication complexity and query complexity. In Proceedings of the 25th Conference on Computational Complexity (CCC), pages 247--258. IEEE, 2010. http://dx.doi.org/10.1109/CCC.2010.31pathdoi:10.1109/CCC.2010.31.
[23]
R. Jain and P. Yao. A strong direct product theorem in terms of the smooth rectangle bound. Technical report, arXiv, 2012. http://arxiv.org/abs/1209.0263patharXiv:1209.0263.
[24]
S. Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of Algorithms and Combinatorics. Springer, 2012.
[25]
I. Kerenidis, S. Laplante, V. Lerays, J. Roland, and D. Xiao. Lower bounds on information complexity via zero-communication protocols and applications. In Proceedings of the 53rd Symposium on Foundations of Computer Science (FOCS), pages 500--509. IEEE, 2012. http://dx.doi.org/10.1109/FOCS.2012.68pathdoi:10.1109/FOCS.2012.68.
[26]
H. Klauck. Rectangle size bounds and threshold covers in communication complexity. In Proceedings of the 18th Conference on Computational Complexity (CCC), pages 118--134. IEEE, 2003. http://dx.doi.org/10.1109/CCC.2003.1214415pathdoi:10.1109/CCC.2003.1214415.
[27]
H. Klauck. Lower bounds for quantum communication complexity. SIAM Journal on Computing, 37(1):20--46, 2007. http://dx.doi.org/10.1137/S0097539702405620pathdoi:10.1137/S0097539702405620.
[28]
H. Klauck. A strong direct product theorem for disjointness. In Proceedings of the 42nd Symposium on Theory of Computing (STOC), pages 77--86. ACM, 2010. http://dx.doi.org/10.1145/1806689.1806702pathdoi:10.1145/1806689.1806702.
[29]
H. Klauck. On Arthur Merlin games in communication complexity. In Proceedings of the 26th Conference on Computational Complexity (CCC), pages 189--199. IEEE, 2011. http://dx.doi.org/10.1109/CCC.2011.33pathdoi:10.1109/CCC.2011.33.
[30]
G. Kol, S. Moran, A. Shpilka, and A. Yehudayoff. Approximate nonnegative rank is equivalent to the smooth rectangle bound. In Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP), pages 701--712. Springer, 2014. http://dx.doi.org/10.1007/978--3--662--43948--7_58pathdoi:10.1007/978--3--662--43948--7_58.
[31]
E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.
[32]
T. Lee and A. Shraibman. An approximation algorithm for approximation rank. In Proceedings of the 24th Conference on Computational Complexity (CCC), pages 351--357. IEEE, 2009. http://dx.doi.org/10.1109/CCC.2009.25pathdoi:10.1109/CCC.2009.25.
[33]
T. Lee and A. Shraibman. Disjointness is hard in the multiparty number-on-the-forehead model. Computational Complexity, 18(2):309--336, 2009. http://dx.doi.org/10.1007/s00037-009-0276--2pathdoi:10.1007/s00037-009-0276--2.
[34]
T. Lee, A. Shraibman, and R.vSpalek. A direct product theorem for discrepancy. In Proceedings of the 23rd Conference on Computational Complexity (CCC), pages 71--80. IEEE, 2008. http://dx.doi.org/10.1109/CCC.2008.25pathdoi:10.1109/CCC.2008.25.
[35]
T. Lee and S. Zhang. Composition theorems in communication complexity. In Proceedings of the 37th International Colloquium on Automata, Languages, and Programming (ICALP), pages 475--489. Springer, 2010. http://dx.doi.org/10.1007/978--3--642--14165--2_41pathdoi:10.1007/978--3--642--14165--2_41.
[36]
R. O'Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. URL: http://www.analysisofbooleanfunctions.org.
[37]
R. Paturi and J. Simon. Probabilistic communication complexity. Journal of Computer and System Sciences, 33(1):106--123, 1986. http://dx.doi.org/10.1016/0022-0000(86)90046--2pathdoi:10.1016/0022-0000(86)90046--2.
[38]
A. Rao and A. Yehudayoff. Simplified lower bounds on the multiparty communication complexity of disjointness. Technical Report TR14-060, Electronic Colloquium on Computational Complexity (ECCC), 2014. URL: http://eccc.hpi-web.de/report/2014/060/.
[39]
R. Raz and P. McKenzie. Separation of the monotone NC hierarchy. Combinatorica, 19(3):403--435, 1999. http://dx.doi.org/10.1007/s004930050062pathdoi:10.1007/s004930050062.
[40]
R. Raz and A. Shpilka. On the power of quantum proofs. In Proceedings of the 19th Conference on Computational Complexity (CCC), pages 260--274. IEEE, 2004. http://dx.doi.org/10.1109/CCC.2004.1313849pathdoi:10.1109/CCC.2004.1313849.
[41]
A. Razborov. On the distributional complexity of disjointness. Theoretical Computer Science, 106(2):385--390, 1992. http://dx.doi.org/10.1016/0304--3975(92)90260-Mpathdoi:10.1016/0304--3975(92)90260-M.
[42]
A. Razborov. Quantum communication complexity of symmetric predicates. Izvestiya: Mathematics, 67(1):145--159, 2003. http://dx.doi.org/10.1070/IM2003v067n01ABEH000422pathdoi:10.1070/IM2003v067n01ABEH000422.
[43]
A. Razborov and A. Sherstov. The sign-rank of AC0. SIAM Journal on Computing, 39(5):1833--1855, 2010. http://dx.doi.org/10.1137/080744037pathdoi:10.1137/080744037.
[44]
R. Shaltiel. Towards proving strong direct product theorems. Computational Complexity, 12(12):1--22, 2003. http://dx.doi.org/10.1007/s00037-003-0175-xpathdoi:10.1007/s00037-003-0175-x.
[45]
A. Sherstov. Communication lower bounds using dual polynomials. Bulletin of the EATCS, 95:59--93, 2008.
[46]
A. Sherstov. Separating AC0 from depth-2 majority circuits. SIAM Journal on Computing, 38(6):2113--2129, 2009. http://dx.doi.org/10.1137/08071421Xpathdoi:10.1137/08071421X.
[47]
A. Sherstov. The pattern matrix method. SIAM Journal on Computing, 40(6):1969--2000, 2011. http://dx.doi.org/10.1137/080733644pathdoi:10.1137/080733644.
[48]
A. Sherstov. The unbounded-error communication complexity of symmetric functions. Combinatorica, 31(5):583--614, 2011. http://dx.doi.org/10.1007/s00493-011--2580-0pathdoi:10.1007/s00493-011--2580-0.
[49]
A. Sherstov. The communication complexity of gap hamming distance. Theory of Computing, 8(8):197--208, 2012. http://dx.doi.org/10.4086/toc.2012.v008a008pathdoi:10.4086/toc.2012.v008a008.
[50]
A. Sherstov. The multiparty communication complexity of set disjointness. In Proceedings of the 44th Symposium on Theory of Computing (STOC), pages 525--548. ACM, 2012. http://dx.doi.org/10.1145/2213977.2214026pathdoi:10.1145/2213977.2214026.
[51]
A. Sherstov. Communication lower bounds using directional derivatives. In Proceedings of the 45th Symposium on Theory of Computing (STOC), pages 921--930. ACM, 2013. http://dx.doi.org/10.1145/2488608.2488725pathdoi:10.1145/2488608.2488725.
[52]
Y. Shi and Y. Zhu. Quantum communication complexity of block-composed functions. Quantum Information and Computation, 9(5--6):444--460, 2009.
[53]
S. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science, 7(1--3):1--336, 2012. http://dx.doi.org/10.1561/0400000010pathdoi:10.1561/0400000010.
[54]
U. Vazirani. Randomness, Adversaries and Computation. PhD thesis, University of California, Berkeley, 1986.
[55]
A. Yao. Lower bounds by probabilistic arguments. In Proceedings of the 24th Symposium on Foundations of Computer Science (FOCS), pages 420--428. IEEE, 1983. http://dx.doi.org/10.1109/SFCS.1983.30pathdoi:10.1109/SFCS.1983.30.

Cited By

View all
  • (2023)Fourier Growth of Communication Protocols for XOR Functions2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00047(721-732)Online publication date: 6-Nov-2023
  • (2023)On Differential Privacy and Adaptive Data Analysis with Bounded SpaceAdvances in Cryptology – EUROCRYPT 202310.1007/978-3-031-30620-4_2(35-65)Online publication date: 15-Apr-2023
  • (2021)Approximating Rectangles by Juntas and Weakly Exponential Lower Bounds for LP Relaxations of CSPsSIAM Journal on Computing10.1137/17M115296651:2(STOC17-305-STOC17-332)Online publication date: 20-May-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
STOC '15: Proceedings of the forty-seventh annual ACM symposium on Theory of Computing
June 2015
916 pages
ISBN:9781450335362
DOI:10.1145/2746539
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 June 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. communication complexity
  2. query complexity

Qualifiers

  • Research-article

Funding Sources

Conference

STOC '15
Sponsor:
STOC '15: Symposium on Theory of Computing
June 14 - 17, 2015
Oregon, Portland, USA

Acceptance Rates

STOC '15 Paper Acceptance Rate 93 of 347 submissions, 27%;
Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Fourier Growth of Communication Protocols for XOR Functions2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00047(721-732)Online publication date: 6-Nov-2023
  • (2023)On Differential Privacy and Adaptive Data Analysis with Bounded SpaceAdvances in Cryptology – EUROCRYPT 202310.1007/978-3-031-30620-4_2(35-65)Online publication date: 15-Apr-2023
  • (2021)Approximating Rectangles by Juntas and Weakly Exponential Lower Bounds for LP Relaxations of CSPsSIAM Journal on Computing10.1137/17M115296651:2(STOC17-305-STOC17-332)Online publication date: 20-May-2021
  • (2020)Towards Defeating Backdoored Random Oracles: Indifferentiability with Bounded AdaptivityTheory of Cryptography10.1007/978-3-030-64381-2_9(241-273)Online publication date: 9-Dec-2020
  • (2020)Super-Linear Time-Memory Trade-Offs for Symmetric EncryptionTheory of Cryptography10.1007/978-3-030-64381-2_12(335-365)Online publication date: 9-Dec-2020
  • (2020)Simplified and Improved Separations Between Regular and General Resolution by LiftingTheory and Applications of Satisfiability Testing – SAT 202010.1007/978-3-030-51825-7_14(182-200)Online publication date: 26-Jun-2020
  • (2019)Simulation Theorems via Pseudo-random Propertiescomputational complexity10.1007/s00037-019-00190-7Online publication date: 18-Jul-2019
  • (2019)Approximate Nonnegative Rank is Equivalent to the Smooth Rectangle BoundComputational Complexity10.1007/s00037-018-0176-428:1(1-25)Online publication date: 1-Mar-2019
  • (2018)Communication complexity with small advantageProceedings of the 33rd Computational Complexity Conference10.5555/3235586.3235595(1-17)Online publication date: 22-Jun-2018
  • (2018)Linear sketching over F2Proceedings of the 33rd Computational Complexity Conference10.5555/3235586.3235594(1-37)Online publication date: 22-Jun-2018
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media