Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3087604.3087622acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

A Case Study on the Parametric Occurrence of Multiple Steady States

Published: 23 July 2017 Publication History

Abstract

We consider the problem of determining multiple steady states for positive real values in models of biological networks. Investigating the potential for these in models of the mitogen-activated protein kinases (MAPK) network has consumed considerable effort using special insights into the structure of corresponding models. Here we apply combinations of symbolic computation methods for mixed equality/inequality systems, specifically virtual substitution, lazy real triangularization and cylindrical algebraic decomposition. We determine multistationarity of an 11-dimensional MAPK network when numeric values are known for all but potentially one parameter. More precisely, our considered model has 11 equations in 11 variables and 19 parameters, 3 of which are of interest for symbolic treatment, and furthermore positivity conditions on all variables and parameters.

References

[1]
D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic decomposition I: The basic algorithm. SIAM J. Comput., 13(4):865--877, 1984.
[2]
D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler. Bertini: Software for numerical algebraic geometry.
[3]
U. S. Bhalla and R. Iyengar. Emergent properties of networks of biological signaling pathways. Science, 283(5400):381--387, 1999.
[4]
C. Chen, J. Davenport, J. May, M. Moreno Maza, B. Xia, and R. Xiao. Triangular decomposition of semi-algebraic systems. J. Symb. Comput., 49:3--26, 2013.
[5]
C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing cylindrical algebraic decomposition via triangular decomposition. In Proceedings of the ISSAC 2009, pages 95--102. ACM, 2009.
[6]
C. Conradi, E. Feliu, M. Mincheva, and C. Wiuf. Identifying parameter regions for multistationarity. Preprint: arXiv:1608.03993, 2017.
[7]
C. Conradi, D. Flockerzi, and J. Raisch. Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. Math. Biosci., 211(1):105--31, 2008.
[8]
C. Conradi and M. Mincheva. Catalytic constants enable the emergence of bistability in dual phosphorylation. Journal of The Royal Society Interface, 11(95), 2014.
[9]
G. Craciun, A. Dickenstein, A. Shiu, and B. Sturmfels. Toric dynamical systems. J. Symb. Comput., 44(11):1551--1565, 2009.
[10]
A. Dolzmann and T. Sturm. Redlog: Computer algebra meets computer logic. ACM SIGSAM Bulletin, 31(2):2--9, 1997.
[11]
M. England, R. Bradford, and J. Davenport. Improving the use of equational constraints in cylindrical algebraic decomposition. In Proceedings of the ISSAC 2015, pages 165--172. ACM, 2015.
[12]
M. England and J. Davenport. The complexity of cylindrical algebraic decomposition with respect to polynomial degre. In Proceedings of the CASC 2016, volume 9890 of LNCS, pages 172--192. Springer, 2016.
[13]
M. Feinberg. Stability of complex isothermal reactors--I. the deficiency zero and deficiency one theorems. Chem. Eng. Sci., 42(10):2229--2268, 1987.
[14]
D. Grigoriev and N. N. Vorobjov. Solving systems of polynomial inequalities in subexponential time. J. Symb. Comput., 5:37--64, 1988.
[15]
E. Gross, H. A. Harrington, Z. Rosen, and B. Sturmfels. Algebraic systems biology: A case study for the Wnt pathway. Bull. Math. Biol., 78(1):21--51, 2016.
[16]
H. Hong, R. Liska, and S. Steinberg. Testing stability by quantifier elimination. J. Symb. Comput., 24(2):161--187, 1997.
[17]
M. D. Johnston. A note on "MAPK networks and their capacity for multistationarity due to toric steady states". arXiv:1407.5651, 2014.
[18]
B. Joshi and A. Shiu. A Survey of Methods for Deciding Whether a Reaction Network is Multistationary. Math. Model. Nat. Phenom., 10(5):47--67, 2015.
[19]
C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler, V. Chelliah, L. Li, E. He, A. Henry, M. I. Stefan, J. L. Snoep, M. Hucka, N. Le Novère, and C. Laibe. BioModels database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Systems Biology, 4:92, 2010.
[20]
N. I. Markevich, J. B. Hoek, and B. N. Kholodenko. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol., 164(3):353--359, 2004.
[21]
M. Pérez Millán and A. Dickenstein. The structure of MESSI biological systems. Preprint: arXiv:1612.08763, 2016.
[22]
M. Pérez Millán and A. G. Turjanski. MAPK's networks and their capacity for multistationarity due to toric steady states. Math. Biosci., 262:125--37, 2015.
[23]
S. Schuster and T. Höfer. Determining all extreme semi-positive conservation relations in chemical reaction systems: a test criterion for conservativity. J. Chem. Soc. Faraday T., 87(16):2561--2566, 1991.
[24]
A. J. Sommese, J. Verschelde, and C. W. Wampler. Introduction to numerical algebraic geometry. In Solving Polynomial Equations: Foundations, Algorithms, and Applications, pages 301--337. Springer, 2005.
[25]
D. Wang. Elimination Methods. Springer, 2000.
[26]
D. Wang and B. Xia. Stability analysis of biological systems with real solution classification. In Proceedings of the ISSAC 2005, pages 354--361. ACM, 2005.
[27]
V. Weispfenning. Quantifier elimination for real algebra--the quadratic case and beyond. Appl. Algebr. Eng. Comm., 8(2):85--101, 1997.
[28]
G. Weng, U. S. Bhalla, and R. Iyengar. Complexity in biological signaling systems. Science, 284(5411):92--6, 1999.

Cited By

View all
  • (2022)A numerical approach for detecting switch-like bistability in mass action chemical reaction networks with conservation lawsBMC Bioinformatics10.1186/s12859-021-04477-x23:1Online publication date: 4-Jan-2022
  • (2021)Exotic Bifurcations in Three Connected Populations with Allee EffectInternational Journal of Bifurcation and Chaos10.1142/S021812742150202331:13Online publication date: 25-Oct-2021
  • (2021)Algorithmic Reduction of Biological Networks with Multiple Time ScalesMathematics in Computer Science10.1007/s11786-021-00515-215:3(499-534)Online publication date: 8-Jul-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ISSAC '17: Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation
July 2017
466 pages
ISBN:9781450350648
DOI:10.1145/3087604
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 July 2017

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Funding Sources

Conference

ISSAC '17

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)12
  • Downloads (Last 6 weeks)1
Reflects downloads up to 21 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2022)A numerical approach for detecting switch-like bistability in mass action chemical reaction networks with conservation lawsBMC Bioinformatics10.1186/s12859-021-04477-x23:1Online publication date: 4-Jan-2022
  • (2021)Exotic Bifurcations in Three Connected Populations with Allee EffectInternational Journal of Bifurcation and Chaos10.1142/S021812742150202331:13Online publication date: 25-Oct-2021
  • (2021)Algorithmic Reduction of Biological Networks with Multiple Time ScalesMathematics in Computer Science10.1007/s11786-021-00515-215:3(499-534)Online publication date: 8-Jul-2021
  • (2021)Parametric Toricity of Steady State Varieties of Reaction NetworksComputer Algebra in Scientific Computing10.1007/978-3-030-85165-1_18(314-333)Online publication date: 13-Sep-2021
  • (2020)Robustness and parameter geography in post-translational modification systemsPLOS Computational Biology10.1371/journal.pcbi.100757316:5(e1007573)Online publication date: 4-May-2020
  • (2020)Cylindrical algebraic decomposition with equational constraintsJournal of Symbolic Computation10.1016/j.jsc.2019.07.019100:C(38-71)Online publication date: 1-Sep-2020
  • (2020)Improved Cross-Validation for Classifiers that Make Algorithmic Choices to Minimise Runtime Without Compromising Output CorrectnessMathematical Aspects of Computer and Information Sciences10.1007/978-3-030-43120-4_27(341-356)Online publication date: 18-Mar-2020
  • (2019)Using Machine Learning to Improve Cylindrical Algebraic DecompositionMathematics in Computer Science10.1007/s11786-019-00394-813:4(461-488)Online publication date: 3-Apr-2019
  • (2019)Multistationarity in the Space of Total Concentrations for Systems that Admit a Monomial ParametrizationBulletin of Mathematical Biology10.1007/s11538-019-00639-481:10(4174-4209)Online publication date: 22-Jul-2019
  • (2019)The Multistationarity Structure of Networks with Intermediates and a Binomial Core NetworkBulletin of Mathematical Biology10.1007/s11538-019-00612-181:7(2428-2462)Online publication date: 17-May-2019
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media