Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3465084.3467931acmconferencesArticle/Chapter ViewAbstractPublication PagespodcConference Proceedingsconference-collections
research-article

The Randomized Local Computation Complexity of the Lovász Local Lemma

Published: 23 July 2021 Publication History

Abstract

The Local Computation Algorithm (LCA) model is a popular model in the field of sublinear-time algorithms that measures the complexity of an algorithm by the number of probes the algorithm makes in the neighborhood of one node to determine that node's output. In this paper we show that the randomized LCA complexity of the Lovász Local Lemma (LLL) on constant degree graphs is Θ(log n). The lower bound follows by proving an Ω(log n) lower bound for the Sinkless Orientation problem introduced in [Brandt et al. STOC 2016]. This answers a question of [Rosenbaum, Suomela PODC 2020]. Additionally, we show that every randomized LCA algorithm for a locally checkable problem with a probe complexity of o(√log n ) can be turned into a deterministic LCA algorithm with a probe complexity of O(log^* n). This improves exponentially upon the currently best known speed-up result from o(log log n) to O(log^* n) implied by the result of [Chang, Pettie FOCS 2017] in the LOCAL model. Finally, we show that for every fixed constant c ≥ 2, the deterministic VOLUME complexity of c-coloring a bounded degree tree is Θ(n), where the VOLUME model is a close relative of the LCA model that was recently introduced by [Rosenbaum, Suomela PODC 2020].

Supplementary Material

MP4 File (zoom_0 (online-video-cutter.com) (2).mp4)
Presentation video

References

[1]
Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. 2012. Space-efficient local computation algorithms. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 1132--1139.
[2]
Béla Bollobás. 1978. Chromatic number, girth and maximal degree. Discrete Mathematics, Vol. 24, 3 (1978), 311--314. https://doi.org/10.1016/0012--365X(78)90102--4
[3]
Sebastian Brandt, Yi-Jun Chang, Jan Grebík, Christoph Grunau, Václav Rozho?, and Zoltán Vidnyánszky. 2021 a. Local Problems on Trees from the Perspectives of Distributed Algorithms, Finitary Factors, and Descriptive Combinatorics. arxiv: 2106.02066 [math.CO] https://arxiv.org/abs/2106.02066
[4]
Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempi"ainen, Joel Rybicki, Jukka Suomela, and Jara Uitto. 2016. A lower bound for the distributed Lovász local lemma. In Proc. 48th ACM Symp. on Theory of Computing (STOC). 479--488.
[5]
Sebastian Brandt, Christoph Grunau, and Václav Rozhovn. 2020. Generalizing the Sharp Threshold Phenomenon for the Distributed Complexity of the Lovász Local Lemma. In Proceedings of the 39th Symposium on Principles of Distributed Computing (PODC). 329--338.
[6]
Sebastian Brandt, Christoph Grunau, and Vá clav Rozhon. 2021 b. The randomized local computation complexity of the Lová sz local lemma. CoRR, Vol. abs/2103.16251 (2021). arxiv: 2103.16251 https://arxiv.org/abs/2103.16251
[7]
Sebastian Brandt, Yannic Maus, and Jara Uitto. 2019. A sharp threshold phenomenon for the distributed complexity of the Lovász local lemma. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (PODC). 389--398.
[8]
Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. 2016. An Exponential Separation Between Randomized and Deterministic Complexity in the LOCAL Model. In Proc. 57th IEEE Symp. on Foundations of Computer Science (FOCS) .
[9]
Yi-Jun Chang and Seth Pettie. 2017. A Time Hierarchy Theorem for the LOCAL Model. In Proc. 58th IEEE Symp. on Foundations of Computer Science (FOCS). 156--167.
[10]
Andrzej Dorobisz and Jakub Kozik. 2021. Local Computation Algorithms for Coloring of Uniform Hypergraphs. arXiv preprint arXiv:2103.10990 (2021).
[11]
Paul Erd's and Lovász László. 1974. Problems and results on 3-chromatic Hypergraphs and some related questions. Coll Math Soc J Bolyai, Vol. 10 (01 1974).
[12]
Guy Even, Moti Medina, and Dana Ron. 2014. Deterministic stateless centralized local algorithms for bounded degree graphs. In European Symposium on Algorithms (ESA). Springer, 394--405.
[13]
Manuela Fischer and Mohsen Ghaffari. 2017. Sublogarithmic Distributed Algorithms for Lovász Local lemma, and the complexity hierarchy. In Proc. 31st Symp. on Distributed Computing (DISC). 18:1--18:16.
[14]
Mohsen Ghaffari. 2019. Distributed maximal independent set using small messages. In Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA). 805--820.
[15]
Mohsen Ghaffari, Christoph Grunau, and Václav Rozhovn. 2021. Improved deterministic network decomposition. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2904--2923.
[16]
Mohsen Ghaffari and Hsin-Hao Su. 2017. Distributed degree splitting, edge coloring, and orientations. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2505--2523.
[17]
Mika Göös, Juho Hirvonen, Reut Levi, Moti Medina, and Jukka Suomela. 2016. Non-local Probes Do Not Help with Many Graph Problems. In Distributed Computing, Cyril Gavoille and David Ilcinkas (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 201--214.
[18]
Christoph Grunau, Slobodan Mitrović, Ronitt Rubinfeld, and Ali Vakilian. 2020. Improved local computation algorithm for set cover via sparsification. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2993--3011.
[19]
Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A model of computation for MapReduce. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 938--948.
[20]
Nati Linial. 1992. Locality in Distributed Graph Algorithms. SIAM J. Comput., Vol. 21, 1 (1992), 193--201.
[21]
A. Marks. 2013. A determinacy approach to Borel combinatorics. Journal of the American Mathematical Society, Vol. 29 (2013), 579--600.
[22]
Robin A. Moser and Gábor Tardos. 2010. A constructive proof of the general Lovász local lemma. Journal of the ACM (JACM), Vol. 57, 2 (2010), 1--15.
[23]
Michal Parnas and Dana Ron. 2007. Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms. Theoretical Computer Science, Vol. 381, 1 (2007), 183--196. https://doi.org/10.1016/j.tcs.2007.04.040
[24]
David Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach .SIAM.
[25]
Will Rosenbaum and Jukka Suomela. 2020. Seeing Far vs. Seeing Wide: Volume Complexity of Local Graph Problems. In Proceedings of the 39th Symposium on Principles of Distributed Computing (PODC) (Virtual Event, Italy). Association for Computing Machinery, New York, NY, USA, 89--98. https://doi.org/10.1145/3382734.3405721
[26]
Václav Rozhovn and Mohsen Ghaffari. 2020. Polylogarithmic-Time Deterministic Network Decomposition and Distributed Derandomization. In Proc. Symposium on Theory of Computation (STOC) .
[27]
Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. 2011. Fast Local Computation Algorithms. In Innovations in Computer Science - ICS 2011, Tsinghua University, Beijing, China, January 7--9, 2011. Proceedings . 223--238. http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/36.html

Cited By

View all
  • (2023)Agnostic proper learning of monotone functions: beyond the black-box correction barrier2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00068(1149-1170)Online publication date: 6-Nov-2023
  • (2022)Properly learning monotone functions via local correction2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS54457.2022.00015(75-86)Online publication date: Oct-2022

Index Terms

  1. The Randomized Local Computation Complexity of the Lovász Local Lemma

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    PODC'21: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing
    July 2021
    590 pages
    ISBN:9781450385480
    DOI:10.1145/3465084
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 23 July 2021

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. gap result
    2. local computation algorithms
    3. volume model

    Qualifiers

    • Research-article

    Funding Sources

    • Horizon 2020 research and innovation programme

    Conference

    PODC '21
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 740 of 2,477 submissions, 30%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)19
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 22 Sep 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Agnostic proper learning of monotone functions: beyond the black-box correction barrier2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00068(1149-1170)Online publication date: 6-Nov-2023
    • (2022)Properly learning monotone functions via local correction2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS54457.2022.00015(75-86)Online publication date: Oct-2022

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media