Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1570256.1570333acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
technical-note

Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed

Published: 08 July 2009 Publication History

Abstract

We propose a multistart CMA-ES with equal budgets for two interlaced restart strategies, one with an increasing population size and one with varying small population sizes. This BI-population CMA-ES is benchmarked on the BBOB-2009 noiseless function testbed and could solve 23, 22 and 20 functions out of 24 in search space dimensions 10, 20 and 40, respectively, within a budget of less than $10^6 D$ function evaluations per trial.

References

[1]
A. Auger and N. Hansen. A restart CMA evolution strategy with increasing population size. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2005), pages 1769--1776. IEEE Press, 2005.
[2]
S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009.
[3]
N. Hansen. The CMA evolution strategy: a comparing review. In J. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea, editors, Towards a new evolutionary computation. Advances on estimation of distribution algorithms, pages 75--102. Springer, 2006.
[4]
N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
[5]
N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009.
[6]
N. Hansen and S. Kern. Evaluating the CMA evolution strategy on multimodal test functions. In X. Yao et al., editors, Parallel Problem Solving from Nature -- PPSN VIII, LNCS 3242, pages 282--291. Springer, 2004.
[7]
N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation, 11(1):1--18, 2003.
[8]
N. Hansen, A. Niederberger, L. Guzzella, and P. Koumoutsakos. A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Transactions on Evolutionary Computation, 13(1):180--197, 2009.
[9]
N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 9(2):159--195, 2001.

Cited By

View all
  • (2025)Benchmarking Derivative-Free Global Optimization Algorithms Under Limited Dimensions and Large Evaluation BudgetsIEEE Transactions on Evolutionary Computation10.1109/TEVC.2024.337975629:1(187-204)Online publication date: Feb-2025
  • (2025)Understanding Instance Hardness for Optimisation Algorithms: Methodologies, Open Challenges and Post-Quantum ImplicationsApplied Mathematical Modelling10.1016/j.apm.2025.115965(115965)Online publication date: Feb-2025
  • (2025)Location, Size, and CapacityInto a Deeper Understanding of Evolutionary Computing: Exploration, Exploitation, and Parameter Control10.1007/978-3-031-75577-4_1(1-152)Online publication date: 18-Jan-2025
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '09: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers
July 2009
1760 pages
ISBN:9781605585055
DOI:10.1145/1570256
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 July 2009

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. CMA-ES
  2. benchmarking
  3. black-box optimization
  4. evolutionary computation

Qualifiers

  • Technical-note

Conference

GECCO09
Sponsor:
GECCO09: Genetic and Evolutionary Computation Conference
July 8 - 12, 2009
Québec, Montreal, Canada

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)56
  • Downloads (Last 6 weeks)1
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Benchmarking Derivative-Free Global Optimization Algorithms Under Limited Dimensions and Large Evaluation BudgetsIEEE Transactions on Evolutionary Computation10.1109/TEVC.2024.337975629:1(187-204)Online publication date: Feb-2025
  • (2025)Understanding Instance Hardness for Optimisation Algorithms: Methodologies, Open Challenges and Post-Quantum ImplicationsApplied Mathematical Modelling10.1016/j.apm.2025.115965(115965)Online publication date: Feb-2025
  • (2025)Location, Size, and CapacityInto a Deeper Understanding of Evolutionary Computing: Exploration, Exploitation, and Parameter Control10.1007/978-3-031-75577-4_1(1-152)Online publication date: 18-Jan-2025
  • (2024)Algorithm Performance Comparison for Integer-Valued OneMaxProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3638530.3654287(407-410)Online publication date: 14-Jul-2024
  • (2024)Data-Efficient Reinforcement Learning for Variable Impedance ControlIEEE Access10.1109/ACCESS.2024.335531112(15631-15641)Online publication date: 2024
  • (2024)Triple-layered chaotic differential evolution algorithm for layout optimization of offshore wave energy convertersExpert Systems with Applications10.1016/j.eswa.2023.122439239(122439)Online publication date: Apr-2024
  • (2024)Oral cancer detection using convolutional neural network optimized by combined seagull optimization algorithmBiomedical Signal Processing and Control10.1016/j.bspc.2023.10554687(105546)Online publication date: Jan-2024
  • (2024)Adapting the population size in CMA-ES using nearest-better clustering method for multimodal optimizationApplied Soft Computing10.1016/j.asoc.2024.112361167(112361)Online publication date: Dec-2024
  • (2024)Gradient-free neural topology optimization: towards effective fracture-resistant designsComputational Mechanics10.1007/s00466-024-02565-2Online publication date: 16-Nov-2024
  • (2024)Auto-Enhanced Population Diversity with Two OptionsIntelligence Computation and Applications10.1007/978-981-97-4393-3_17(207-219)Online publication date: 2-Jul-2024
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media