Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Efficient targeted search using a focus and context video browser

Published: 30 November 2012 Publication History

Abstract

Currently there are several interactive content-based video retrieval techniques and systems available. However, retrieval performance depends heavily on the means of interaction. We argue that effective CBVR requires efficient, specialized user interfaces. In this article we propose guidelines for such an interface, and we propose an effective CBVR engine: the ForkBrowser, which builds upon the principle of focus and context. This browser is evaluated using a combination of user simulation and real user evaluation. Results indicate that the ideas have merit, and that the browser performs very well when compared to the state-of-the-art in video retrieval.

References

[1]
Adcock, J., Cooper, M., and Chen, F. 2007. Fxpal mediamagic video search system. In Proceedings of the ACM International Conference on Image and Video Retrieval. 644--644.
[2]
Adcock, J., Cooper, M., Girgensohn, A., and Wilcox, L. 2005. Interactive video search using multilevel indexing. In Proceedings of the ACM International Conference on Image and Video Retrieval. Lecture Notes in Computer Science, vol. 3568. Springer. 205--214.
[3]
Chang, C.-C. and Lin, C.-J. 2001. Libsvm: A library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
[4]
Chen, M.-Y., Christel, M., Hauptmann, A., and Wactlar, H. 2005. Putting active learning into multimedia applications: Dynamic Definition and refinement of concept classifiers. In Proceedings of the 13th Annual ACM International Conference on Multimedia. ACM, New York, 902--911.
[5]
Christel, M. G., Huang, C., Moraveji, N., and Papernick, N. 2004. Exploiting multiple modalities for interactive video retrieval. In Proceedings of the IEEE International Conference on Acoustic, Speech and Signal Processing. Vol. 3. 1032--1035.
[6]
Christel, M. G. and Yan, R. 2007. Merging storyboard strategies and automatic retrieval for improving interactive video search. In Proceedings of the 6th ACM International Conference on Image and Video Retrieval. ACM, New York, 486--493.
[7]
Cord, M., Gosselin, P. H., and Philipp-Foliguet, S. 2007. Stochastic exploration and active learning for image retrieval. Image Vis. Comput. 25, 1, 14--23.
[8]
de Rooij, O. and Worring, M. 2010. Browsing video along multiple threads. IEEE Trans. Multimedia 12, 2, 121--130.
[9]
Furnas, G. 1986. Generalized fisheye views. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 16--23.
[10]
Gosselin, P. H. and Cord, M. 2004. A comparison of active classification methods for content-based image retrieval. In Proceedings of the 1st International Workshop on Computer Vision Meets Databases. ACM, New York, 51--58.
[11]
Hauptmann, A. G. and Christel, M. G. 2004. Successful approaches in the trec video retrieval evaluations. In Proceedings of the 12th Annual ACM International Conference on Multimedia. ACM, New York, 668--675.
[12]
Hauptmann, A. G., Lin, W.-H., Yan, R., Yang, J., and Chen, M.-Y. 2006. Extreme video retrieval: Joint maximization of human and computer performance. In Proceedings of the 14th Annual ACM International Conference on Multimedia. ACM Press, New York, 385--394.
[13]
Huijbregts, M., Ordelman, R., and de Jong, F. 2007. Annotation of heterogeneous multimedia content using automatic speech recognition. In Proceedings of the International Conference on Semantics and Digital Media Technologies. Lecture Notes in Computer Science.
[14]
Lew, M. S., Sebe, N., Djeraba, C., and Jain, R. 2006. Content-Based multimedia information retrieval: State of the art and challenges. ACM Trans. Multimedia Comput. Commun. Appl. 2, 1, 1--19.
[15]
Luan, H.-B., Neo, S.-Y., Goh, H.-K., Zhang, Y.-D., Lin, S.-X., and Chua, T.-S. 2007. Segregated feedback with performance-based adaptive sampling for interactive news video retrieval. In Proceedings of the 15th International Conference on Multimedia. ACM, New York, 293--296.
[16]
Natsev, A. P., Haubold, A., Tešić, J., Xie, L., and Yan, R. 2007. Semantic concept-based query expansion and re-ranking for multimedia retrieval. In Proceedings of the 15th International Conference on Multimedia. ACM, New York, 991--1000.
[17]
Natsev, A. P., Naphade, M. R., and Tešić, J. 2005. Learning the semantics of multimedia queries and concepts from a small number of examples. In Proceedings of the 13th Annual ACM International Conference on Multimedia. ACM, New York, 598--607.
[18]
Petersohn, C. 2004. Fraunhofer HHI at TRECVID 2004: Shot boundary detection system. In Proceedings of the TRECVID Workshop.
[19]
Rautiainen, M., Seppänen, T., and Ojala, T. 2006. On the significance of cluster-temporal browsing for generic video retrieval: A statistical analysis. In Proceedings of the 14th Annual ACM International Conference on Multimedia. ACM, New York, 125--128.
[20]
Robertson, G., Czerwinski, M., Larson, K., Robbins, D. C., Thiel, D., and van Dantzich, M. 1998. Data mountain: Using spatial memory for document management. In Proceedings of the 11th Annual ACM Symposium on User interface Software and Technology. ACM Press, New York, 153--162.
[21]
Smeaton, A. F., Over, P., and Kraaij, W. 2006. Evaluation campaigns and trecvid. In Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval. ACM Press, New York, 321--330.
[22]
Snoek, C. G. M., van de Sande, K. E. A., de Rooij, O., Huurnink, B., van Gemert, J. C., Uijlings, J. R. R., He, J., Li, X., Everts, I., Nedović, V., van Liempt, M., van Balen, R., Yan, F., Tahir, M. A., Mikolajczyk, K., Kittler, J., de Rijke, M., Geusebroek, J.-M., Gevers, T., Worring, M., Smeulders, A. W. M., and Koelma, D. C. 2008. The MediaMill TRECVID 2008 semantic video search engine. In Proceedings of the 6th TRECVID Workshop.
[23]
Snoek, C. G. M., Worring, M., Koelma, D. C., and Smeulders, A. W. M. 2007. A learned lexicon-driven paradigm for interactive video retrieval. IEEE Trans. Multimedia 9, 2, 280--292.
[24]
Sundaram, H. and Chang, S.-F. 2001. Condensing computable scenes using visual complexity and film syntax analysis. In Proceedings of the IEEE International Conference on Multimedia and Expo. 70.
[25]
Tong, S. and Chang, E. 2001. Support vector machine active learning for image retrieval. In Proceedings of the 9th ACM International Conference on Multimedia. ACM, New York, 107--118.
[26]
van Gemert, J. C., Snoek, C. G. M., Veenman, C. J., Smeulders, A. W. M., and Geusebroek, J. M. 2010. Comparing compact codebooks for visual categorization. Computer Vision and Image Understanding in press.
[27]
Wang, D., Liu, X., Luo, L., Li, J., and Zhang, B. 2007. Video diver: Generic video indexing with diverse features. In Proceedings of the International Workshop on Multimedia Information Retrieval. ACM, New York, 61--70.
[28]
Ware, C. 2000. Information Visualization: Perception for Design. Morgan Kaufmann Publishers Inc., San Francisco, CA.
[29]
Yan, R., Natsev, A., and Campbell, M. 2007. An efficient manual image annotation approach based on tagging and browsing. In Workshop on Multimedia Information Retrieval on the Many Faces of Multimedia Semantics. ACM, New York, 13--20.
[30]
Yee, K.-P., Swearingen, K., Li, K., and Hearst, M. 2003. Faceted metadata for image search and browsing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, New York, 401--408.
[31]
Zavesky, E., Chang, S.-F., and Yang, C.-C. 2008. Visual islands: Intuitive browsing of visual search results. In Proceedings of the International Conference on Content-Based Image and Video Retrieval. ACM, New York, 617--626.

Cited By

View all
  • (2021)Impact of Interaction Strategies on User Relevance FeedbackProceedings of the 2021 International Conference on Multimedia Retrieval10.1145/3460426.3463663(590-598)Online publication date: 24-Aug-2021
  • (2021)DeepOpht: Medical Report Generation for Retinal Images via Deep Models and Visual Explanation2021 IEEE Winter Conference on Applications of Computer Vision (WACV)10.1109/WACV48630.2021.00249(2441-2451)Online publication date: Jan-2021
  • (2021)A video indexing and retrieval computational prototype based on transcribed speechMultimedia Tools and Applications10.1007/s11042-021-11401-1Online publication date: 30-Aug-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Multimedia Computing, Communications, and Applications
ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 8, Issue 4
November 2012
139 pages
ISSN:1551-6857
EISSN:1551-6865
DOI:10.1145/2379790
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 November 2012
Accepted: 01 May 2011
Revised: 01 December 2010
Received: 01 June 2010
Published in TOMM Volume 8, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Multidimensional browsing
  2. conceptual similarity
  3. information visualization
  4. interactive search
  5. semantic threads

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Impact of Interaction Strategies on User Relevance FeedbackProceedings of the 2021 International Conference on Multimedia Retrieval10.1145/3460426.3463663(590-598)Online publication date: 24-Aug-2021
  • (2021)DeepOpht: Medical Report Generation for Retinal Images via Deep Models and Visual Explanation2021 IEEE Winter Conference on Applications of Computer Vision (WACV)10.1109/WACV48630.2021.00249(2441-2451)Online publication date: Jan-2021
  • (2021)A video indexing and retrieval computational prototype based on transcribed speechMultimedia Tools and Applications10.1007/s11042-021-11401-1Online publication date: 30-Aug-2021
  • (2015)Similarity Search over the Cloud Based on Image Descriptors' Dimensions Value CardinalitiesACM Transactions on Multimedia Computing, Communications, and Applications10.1145/271631511:4(1-23)Online publication date: 2-Jun-2015
  • (2015)The interface between forensic science and technology: how technology could cause a paradigm shift in the role of forensic institutes in the criminal justice systemPhilosophical Transactions of the Royal Society B: Biological Sciences10.1098/rstb.2014.0264370:1674(20140264)Online publication date: 22-Jun-2015
  • (2014)Towards interactive, intelligent, and integrated multimedia analytics2014 IEEE Conference on Visual Analytics Science and Technology (VAST)10.1109/VAST.2014.7042476(3-12)Online publication date: Oct-2014

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media