Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2786784.2786803acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

Computational design of walking automata

Published: 07 August 2015 Publication History

Abstract

Creating mechanical automata that can walk in stable and pleasing manners is a challenging task that requires both skill and expertise. We propose to use computational design to offset the technical difficulties of this process. A simple drag-and-drop interface allows casual users to create personalized walking toys from a library of pre-defined template mechanisms. Provided with this input, our method leverages physical simulation and evolutionary optimization to refine the mechanical designs such that the resulting toys are able to walk. The optimization process is guided by an intuitive set of objectives that measure the quality of the walking motions. We demonstrate our approach on a set of simulated mechanical toys with different numbers of legs and various distinct gaits. Two fabricated prototypes showcase the feasibility of our designs.

Supplementary Material

ZIP File (p93-bharaj.zip)

References

[1]
Auger, A., and Hansen, N. 2012. Tutorial CMA-ES: Evolution strategies and covariance matrix adaptation. In Proceedings of ACM GECCO, 827--848.
[2]
Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4.
[3]
Bacher, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-it: Optimizing moment of inertia for spinnable objects. ACM Trans. Graph. 33, 4.
[4]
Bishop, C. M., et al. 2006. Pattern Recognition and Machine Learning, vol. 4. Springer.
[5]
Calì, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3d-printing of non-assembly, articulated models. ACM Trans. Graph. 31, 6, 130:1--130:8.
[6]
Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. In ACM Trans. Graph. (Proc. SIGGRAPH Asia).
[7]
Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. 2011. Probabilistic reasoning for assembly-based 3d modeling. ACM Trans. Graph. 30, 4, 35:1--35:10.
[8]
Coros, S., Karpathy, A., Jones, B., Reveret, L., and van de Panne, M. 2011. Locomotion skills for simulated quadrupeds. In ACM Trans. Graph. (Proc. SIGGRAPH), 59:1--59:12.
[9]
Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM Trans. Graph. 32, 4, 83:1--83:12.
[10]
Gehring, C., Coros, S., Hutter, M., Bloesch, M., Hoepflinger, M., and Siegwart, R. 2013. Control of dynamic gaits for a quadrupedal robot. IEEE ICRA.
[11]
Gehring, C., Coros, S., Hutter, M., Bloesch, M., Hoepflinger, M., and Siegwart, R. 2014. Towards automatic discovery of agile gaits for quadrupedal robots. IEEE ICRA.
[12]
Geijtenbeek, T., van de Panne, M., and van der Stappen, A. F. 2013. Flexible muscle-based locomotion for bipedal creatures. ACM Trans. Graph. 32, 6.
[13]
Hansen, N. 2006. The cma evolution strategy: a comparing review. In Towards a new evolutionary computation. Springer, 75--102.
[14]
Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., and Tibshirani, R. 2009. The elements of statistical learning, vol. 2. Springer.
[15]
Lee, Y., Kim, S., and Lee, J. 2010. Data-driven biped control. ACM Trans. Graph. 29, 4, 129:1--129:8.
[16]
Lee, S., Yosinski, J., Glette, K., Lipson, H., and Clune, J. 2013. Evolving gaits for physical robots with the hyperneat generative encoding: The benefits of simulation. Springer.
[17]
McKay, M. D., Beckman, R. J., and Conover, W. J. 1979. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 2, 239--245.
[18]
Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: Balancing shapes for 3d fabrication. ACM Trans. Graph. 32, 4, 81:1--81:10.
[19]
Schwarz, G., et al. 1978. Estimating the dimension of a model. The annals of statistics 6, 2, 461--464.
[20]
Sims, K. 1994. Evolving virtual creatures. In ACM SIGGRAPH, 15--22.
[21]
Tan, J., Gu, Y., Turk, G., and Liu, C. K. 2011. Articulated swimming creatures. In ACM SIGGRAPH 2011 papers, ACM, SIGGRAPH '11, 58:1--58:12.
[22]
Tan, J., Gu, Y., Liu, C. K., and Turk, G. 2014. Learning bicycle stunts. In ACM Trans. Graph. (Proc. SIGGRAPH), ACM.
[23]
Thomaszewski, B., Coros, S., Gauge, D., Megaro, V., Grinspun, E., and Gross, M. 2014. Computational design of linkage-based characters. ACM Trans. Graph. 33, 4, 64:1--64:9.
[24]
Umetani, N., Koyama, Y., Schdmit, R., and Igarashi, T. 2014. Pteromys: Interactive design and optimization of free-formed free-flight model airplanes. ACM Trans. Graph. (Proc. SIGGRAPH) 34, 4.
[25]
Wampler, K., and Popović, Z. 2009. Optimal gait and form for animal locomotion. In ACM Trans. Graph. (Proc. SIGGRAPH), 60:1--60:8.
[26]
Xu, K., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Fit and diverse: Set evolution for inspiring 3d shape galleries. ACM Trans. Graph. 31, 4, 57:1--57:10.
[27]
Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM Trans. Graph. 31, 6, 127:1--127:10.

Cited By

View all

Index Terms

  1. Computational design of walking automata

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SCA '15: Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation
    August 2015
    193 pages
    ISBN:9781450334969
    DOI:10.1145/2786784
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 07 August 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. animation
    2. fabrication
    3. mechanical characters

    Qualifiers

    • Research-article

    Conference

    SCA '15
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 183 of 487 submissions, 38%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)18
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 14 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Exact 3D Path Generation via 3D Cam-Linkage MechanismsACM Transactions on Graphics10.1145/3550454.355543141:6(1-13)Online publication date: 30-Nov-2022
    • (2021)Designing actuation systems for animatronic figures via globally optimal discrete searchACM Transactions on Graphics10.1145/3450626.345986740:4(1-10)Online publication date: 19-Jul-2021
    • (2021)Learning a family of motor skills from a single motion clipACM Transactions on Graphics10.1145/3450626.345977440:4(1-13)Online publication date: 19-Jul-2021
    • (2020)Computational design of generalized centrifugal puzzlesComputers and Graphics10.1016/j.cag.2020.05.00590:C(21-28)Online publication date: 1-Aug-2020
    • (2019)EchidnaProceedings of the 3rd Annual ACM Symposium on Computational Fabrication10.1145/3328939.3329004(1-12)Online publication date: 16-Jun-2019
    • (2018)Design, Representations, and Processing for Additive ManufacturingSynthesis Lectures on Visual Computing10.2200/S00847ED1V01Y201804VCP03110:2(1-146)Online publication date: 22-Jun-2018
    • (2018)Wireless Analytics for 3D Printed ObjectsProceedings of the 31st Annual ACM Symposium on User Interface Software and Technology10.1145/3242587.3242639(141-152)Online publication date: 11-Oct-2018
    • (2018)TrussFormerProceedings of the 31st Annual ACM Symposium on User Interface Software and Technology10.1145/3242587.3242607(113-125)Online publication date: 11-Oct-2018
    • (2018)SkaterbotsACM Transactions on Graphics10.1145/3197517.320136837:4(1-12)Online publication date: 30-Jul-2018
    • (2018)Pseudo-Locomotion Design with a Quadrotor-Assisted Biped Robot2018 IEEE International Conference on Robotics and Biomimetics (ROBIO)10.1109/ROBIO.2018.8665340(2462-2466)Online publication date: Dec-2018
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media