Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

On the statistical independence of compound pseudorandom numbers over part of the period

Published: 01 July 2001 Publication History

Abstract

This article deals with the compound methods with modulus m for generating uniform pseudorandom numbers, which have been introduced recently. Equidistribution and statistical independence properties of the generated sequences over part of the period are studied based on the discrepancy of d-tuples of successive pseudorandom numbers. It is shown that there exist parameters in compound methods such that the discrepancy over part of the period of the corresponding point sets in the d-dimensional unit cube is of an order magnitude of O(N-1/2 (log N)d+3) for all N=1, …, m. This result is applied to the compound nonlinear, inversive and explicit inversive congruential methods.

References

[1]
COCHRANE, T. 1988. Trigonometric approximation and uniform distribution modulo one. Proc. AMS 103, 695-702.
[2]
DRMOTA, M., AND TICHY, R. F. 1997. Sequences, Discrepancies and Applications, Lecture Notes in Mathematics, vol. 1651. Springer-Verlag, New York.
[3]
EICHENAUER, J., GROTHE, H., AND LEHN, J. 1988. Marsaglia's lattice test and non-linear congruential pseudorandom number generators. Metrika 35, 241-250.
[4]
EICHENAUER,J.,AND LEHN, J. 1986. A non-linear congruential pseudorandom number generator. Statist. Papers 27, 315-326.
[5]
EICHENAUER-HERRMANN, J. 1993a. Explicit inversive congruential pseudorandom numbers: The compound approach. Computing 51, 175-182.
[6]
EICHENAUER-HERRMANN, J. 1993b. Statistical independence of a new class of inversive congruential pseudorandom numbers. Math. Comp. 60, 375-384.
[7]
EICHENAUER-HERRMANN, J. 1994a. Compound nonlinear congruential pseudorandom numbers. Monatsh. Math. 117, 213-222.
[8]
EICHENAUER-HERRMANN, J. 1994b. On generalized inversive congruential pseudorandom numbers. Math. Comput. 63, 293-299.
[9]
EICHENAUER-HERRMANN, J. 1995. Pseudorandom number generation by nonlinear methods. Internat. Statist. Rev. 63, 247-255.
[10]
EICHENAUER-HERRMANN,J.,AND EMMERICH, F. 1996. Compound inversive congruential pseudorandom numbers: An average case analysis. Math. Comput. 65, 215-225.
[11]
EICHENAUER-HERRMANN, J., EMMERICH,F.,AND LARCHER, G. 1997. Average discrepancy, hyperplanes, and compound pseudorandom numbers. Finite Fields Appl. 3, 203-218.
[12]
EICHENAUER-HERRMANN,J.,AND LARCHER, G. 1996. Average behaviour of compound nonlinear congruential pseudorandom numbers. Finite Fields Appl. 2, 111-123.
[13]
EICHENAUER-HERRMANN,J.,AND NIEDERREITER, H. 1994. Digital inversive pseudorandom numbers. ACM Trans. Model. Comput. Simulation 4, 339-349.
[14]
EICHENAUER-HERRMANN,J.,AND NIEDERREITER, H. 1997. Parallel streams of nonlinear congruential pseudorandom numbers. Finite Fields Appl. 3, 219-233.
[15]
HEINRICH, S. 1996. Efficient algorithms for computing L2 discrepancy. Math. Comput, 65, 216, 1621-1633.
[16]
HELLEKALEK,P.,AND NIEDERREITER, H. 1998. The weighted spectral test: diaphony. ACM Trans. Model. Comput. 8, 43-60.
[17]
KIEFER, J. 1961. On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm. Pacific J. Math. 11, 649-660.
[18]
KNUTH, D. 1981. The Art of Computer Programming, Volume 2. Addison-Wesley, San Francisco, Calif.
[19]
KOROBOV, N. M. 1992. Exponential Sums and Their Applications. Kluwer Academic Publishers, Dordrecht, Germany.
[20]
L'ECUYER, P. 1994. Uniform random number generation. Ann. Oper. Res. 53, 77-120.
[21]
LEV, V. F. 1995. L2 -discrepancy and geometrical interpretation of diaphony. Acta Math. Hun-gar. 69, 281-300.
[22]
LEVIN, M. B. 1989. On the choice of parameters in generators of pseudorandom numbers. Sov. Math. Dokl. 40, 101-105.
[23]
LEVIN, M. B. 1999. Discrepancy estimates of completely uniform distributed sequences and pseudorandom sequence. Intern. Math. Res. Notes 22, 1231-1251.
[24]
LEVIN, M. B. 2000. Explicit digital inversive pseudorandom numbers. Math. Slovaca., 50,5, 581-598.
[25]
NIEDERREITER, H. 1977. Pseudo-random numbers and optimal coefficients. Adv. Math. 26, 99-181.
[26]
NIEDERREITER, H. 1978. Quasi-monte carlo methods and pseudorandom numbers. Bull. Amer. Math. Soc. 84, 957--1041.
[27]
NIEDERREITER, H. 1992. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, Pa.
[28]
NIEDERREITER, H. 1994. On a new class of pseudorandom numbers for simulation methods. J. Comput. Appl. Math. 56, 159-167.
[29]
STEGBUCHNER, H. 1979. Eine mehrdimensionale version der ungleichung von leveque. Monatsh. Math. 87, 167-169.
[30]
ZINTERHOF, P. 1976. Uber einige abschatzungen bei der approximation von funktionen mit gleichverteilungsmethoden. Osterr. Akad. Wiss. SB II 185, 121-132.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Modeling and Computer Simulation
ACM Transactions on Modeling and Computer Simulation  Volume 11, Issue 3
July 2001
79 pages
ISSN:1049-3301
EISSN:1558-1195
DOI:10.1145/502109
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 2001
Published in TOMACS Volume 11, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Diaphony
  2. discrepancy
  3. theoretical tests

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 334
    Total Downloads
  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media