Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article
Free access

A neural network for probabilistic information retrieval

Published: 01 May 1989 Publication History

Abstract

This paper demonstrates how a neural network may be constructed, together with learning algorithms and modes of operation, that will provide retrieval effectiveness similar to that of the probabilistic indexing and retrieval model based on single terms as document components.

References

[1]
Belew, R.K. (1986) . Adaptive information retrieval: machine learning in associative networks. Ph.D. Thesis, University of Michigan.
[2]
Bookstein, A. (1981) . A comparison of two weighting schemes for Boolean retrieval. In" Oddy,R.N; Robertson, S.E. ; van Rijsbergen, C.J. ; Williams, P.W. (ed.) : IR Research. London: Butterworths.
[3]
Bookstein, A. ; Swanson, D. R. (1975). A decision theoretic foundation for indexing. J. of ASIS. 26:45-50.
[4]
Brachman, R.J. & McGuinness, D.L. (1988) Knowledge representation, Connectionism, and Conceptual retrieval. In" Chiaaramella, Y. (ed.) : Proc. of llth ACM Intl. Conf on R&D in IR. Grenoble'PUG.
[5]
Croft, W. B. (1983) Experiments with representation in a document retrieval system. Info. Tech. : R&D. 2:1-21.
[6]
Deerwester, S. ; Dumais, S.T. ; Furnas, G.W. ; Landauer, T.K. (1988) Indexing by latent semantic analysis, in: Chiaarmella, Y. (ed.) : Proc. of llth ACM Intl. Conf. on R&D in IR. Grenoble: PUG.
[7]
Feldman, J.A. & Ballard, D.H. (1982) . Connectionist models and their properties. Cognitive Science, 6, 205-254.
[8]
Hebb, D.O. (1949) . The organization of behavior. N.Y.-Wiley.
[9]
Hinton, G.E. & Anderson, J.A. (Eds.) #1981) . Parallel models of associative memory. Hillsdale NJ: Erlbaum.
[10]
Hinton, G.E. ; Sejnowsky, T.J. ; Ackley, D.H. (1984) . Boltzmann Machines" constraint satisfaction networks that learn. T.R. CMU-CS-84-119. Pittsburgh:
[11]
Carnegie-Mel lon Univsity. Hopfield, J.j. (1982) . Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA, 79, 2554-2558.
[12]
Hopfield, J.J. (1984) . Neurons with graded response have collective computational properties like those of twostate neurons. Proc. Natl. Acad~ Sci. USA, 81, 3088-3092.
[13]
Kwok, K.L. & Kuan, W. (1988) . Experiments with document components for indexing and retrieval Info. Mngmt. Proc., 24, 405-417.
[14]
Kwok, K. L. (1986) . An interpretation of index term weighting schemes based on document components. In- Rabitti, F. (ed.)- Proc. of 1986 ACM Conf. on R&D in IR. Baltimore: ACM, 275-283.
[15]
Kwok, K.L. (1985). A probabilistic theory of indexing and similarity meausre based on cited and citing documents. J. of ASIS. 36:342-351.
[16]
Kwok, K.L. (19xx) . Further results of probabilistic retrieval based on single terms as document components. (to be submitted.)
[17]
Llinas, R.R. (1975). The cortex of the cerebellum. Scientific American, 232, 56-71.
[18]
Marr, D. (1969) . A theory of cerebellar cortex. J. of Physiology, 202, 437-470.
[19]
Mozer, M.C. (1984) . Inductive information retrieval using parallel distributed computation ICS T.R. 84 06. La Jolla: UCSD.
[20]
Radecki, T. (1979) . Fuzzy-set theoretical approach to document retrieval. Info. Proc. Mgmnt. 15:247-259.
[21]
Robertson, S. E. ; Maron, M.E. ; Cooper, W.S. (1982) . Probability of relevance- a unification of two competing models for document retrieval." Info. Tech.-R&D 1:1-21.
[22]
Robertson, S.E. ; Sparck Jones, K (1976) . Relevance weighting of search terms." J. of ASIS. 27: 129-146.
[23]
Rumelhart, D.E. ; Hinton, G.E. ; Williams, R.J. (1986). Learning representations by back-propagating errors. Nature 323, 533-36.
[24]
Rumelhart, D.E. & McClelland,J.L. (1986) . Parallel distributed processing, Vol. I Foundations & Vol. II Psychological and biological models. Cambridge, MA: MIT Press.
[25]
Salton, G. & Buckley, C. (1988) . On the Use of Spreading Activation Methods in Automatic Information Retrieval. T.R. 88-907, Ithaca: Computer Science Dept., Cornell University.
[26]
Salton, G; Fox, E.A; Wu, H(1983). Extended Boolean information retrieval. Comm. of ACM. 26" 1022-1036.
[27]
Salton, G. (1968) . Automatic information organization and retrieval. New York: McGraw Hill
[28]
Smolensky, P. & Riley, M.S (1984) Harmony theory: problem solving, parallel cognitive models, and thermal physics, iCS T.R. 8404. La Jolla: UCSD.
[29]
Sparck Jones, K. (1972) . A statistical interprestation of term specificity and its application in retrieval. J of Doc. 8:11-21.
[30]
Sutton, R.S.& Barto, A.G. (1981) . Toward a modern theory of adaptive networks- expectation and prediction. Psych. Rev 88- 135- 170.
[31]
van Rijsbergen, C.J. (1977). A theoretical basis for the use of co-occurrence data in information retrieval. J. of Doc. 33- i06-i19.
[32]
Waller, W.G; Kraft, D.H (1979). A mathematical model for a weighted boolean retrieval system. Info. Proc. Mgmnt. 15: 235-245.
[33]
Widrow, G.& Hoff, M.E. (1960) . Adaptive switching circuits. IRE WESCON Convention Record, Part 4 pp.96-i04.
[34]
Wong, S.K.M; Ziarko, W; Raghavan, V.V. ; Wong, P.C.N. (1987). On modeling of information retrieval concepts in vector spaces. TODS, 12, 299-321.
[35]
Yu, C. T. ; Salton, G. (1976) . Precision weighting - an effective automatic indexing method." J. of ACM. 23:76-86.

Cited By

View all
  • (2020)Learning to rank by using multivariate adaptive regression splines and conic multivariate adaptive regression splinesComputational Intelligence10.1111/coin.1241337:1(371-408)Online publication date: 22-Oct-2020
  • (2016)Precedence tree guided search for the efficient identification of multiple situations of interest - AND/OR graph matchingInformation Fusion10.1016/j.inffus.2015.02.00127:C(240-254)Online publication date: 1-Jan-2016
  • (2015)Content-Based Similarity of Twitter UsersAdvances in Information Retrieval10.1007/978-3-319-16354-3_56(507-512)Online publication date: 2015
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGIR Forum
ACM SIGIR Forum  Volume 23, Issue SI
Special issue: Proceedings of the 12th annual international ACMSIGIR conference on Research and development in information retrieval, N.J. Belkin and C.J. van Rijsbergen (Eds.), June 25-28, 1989, Cambridge, MA.
June 1989
243 pages
ISSN:0163-5840
DOI:10.1145/75335
Issue’s Table of Contents
  • cover image ACM Conferences
    SIGIR '89: Proceedings of the 12th annual international ACM SIGIR conference on Research and development in information retrieval
    May 1989
    257 pages
    ISBN:0897913213
    DOI:10.1145/75334
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 May 1989
Published in SIGIR Volume 23, Issue SI

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)147
  • Downloads (Last 6 weeks)29
Reflects downloads up to 16 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2020)Learning to rank by using multivariate adaptive regression splines and conic multivariate adaptive regression splinesComputational Intelligence10.1111/coin.1241337:1(371-408)Online publication date: 22-Oct-2020
  • (2016)Precedence tree guided search for the efficient identification of multiple situations of interest - AND/OR graph matchingInformation Fusion10.1016/j.inffus.2015.02.00127:C(240-254)Online publication date: 1-Jan-2016
  • (2015)Content-Based Similarity of Twitter UsersAdvances in Information Retrieval10.1007/978-3-319-16354-3_56(507-512)Online publication date: 2015
  • (2011)Cell assemblies for query expansion in Information RetrievalThe 2011 International Joint Conference on Neural Networks10.1109/IJCNN.2011.6033269(551-558)Online publication date: Jul-2011
  • (2011)Graph-based term weighting for information retrievalInformation Retrieval10.1007/s10791-011-9172-x15:1(54-92)Online publication date: 28-Jun-2011
  • (2009)Neural Network Based Text Mining to Discover Enterprise NetworksIFAC Proceedings Volumes10.3182/20090603-3-RU-2001.009942:4(852-857)Online publication date: 2009
  • (2007)Regularizing query-based retrieval scoresInformation Retrieval10.1007/s10791-007-9034-810:6(531-562)Online publication date: 21-Sep-2007
  • (2005)Web mining: Machine learning for web applicationsAnnual Review of Information Science and Technology10.1002/aris.144038010738:1(289-329)Online publication date: 22-Sep-2005
  • (1999)Context-sensitive vocabulary mapping with a spreading activation networkProceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval10.1145/312624.312678(198-205)Online publication date: 1-Aug-1999
  • (1995)An intelligent agent for high-precision text filteringProceedings of the fourth international conference on Information and knowledge management10.1145/221270.221569(205-211)Online publication date: 2-Dec-1995
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media